Zebrafish pp 133-143 | Cite as

Nitroreductase-Mediated Cell Ablation in Transgenic Zebrafish Embryos

  • Harshan Pisharath
  • Michael J. Parsons
Part of the Methods in Molecular Biology book series (MIMB, volume 546)


Prodrug dependent cell ablation is a method that allows inducible and spatially restricted cell destruction. We describe transgenic methods to express the Escherichia coli nfsB in a tissue restricted manner in the zebrafish. This bacterial gene encodes a nitroreductase (NTR) enzyme that can render prodrugs such as metronidazole (Met) cytotoxic. Using the expression of NTR fused to a fluorescent protein, one can simultaneously make cells susceptible to prodrug treatment and visualize cell ablation as it occurs.

Key words

Ablation Nitroreductase Metronidazole Prodrug Transactivation Gal4 UAS 



The authors wish to acknowledge Steve Leach for critical reading of the manuscript and Matthew Knabel for expert technical support. HP was supported by NIH NCRR T32 Grant 07002. MJP is supported in part by funding from the Juvenile Diabetes Research Foundation.


  1. 1.
    Yang, C. T., and Johnson, S. L. (2006). Small molecule-induced ablation and subsequent regeneration of larval zebrafish melanocytes, Development 133, 3563–3573.CrossRefPubMedGoogle Scholar
  2. 2.
    Borrelli, E., Heyman, R., Hsi, M., and Evans, R. M. (1988) Targeting of an inducible toxic phenotype in animal cells, Proc Natl Acad Sci U S A 85, 7572–7576.CrossRefPubMedGoogle Scholar
  3. 3.
    Clark, A. J., Iwobi, M., Cui, W., Crompton, M., Harold, G., Hobbs, S., Kamalati, T., Knox, R., Neil, C., Yull, F., and Gusterson, B. (1997). Selective cell ablation in transgenic mice expression E. coli nitroreductase, Gene Ther 4, 101–110.Google Scholar
  4. 4.
    Drabek, D., Guy, J., Craig, R., and Grosveld, F. (1997). The expression of bacterial nitroreductase in transgenic mice results in specific cell killing by the prodrug CB1954, Gene Ther 4, 93–100.CrossRefPubMedGoogle Scholar
  5. 5.
    Smith, S. J., Kotecha, S., Towers, N., and Mohun, T. J. (2007). Targeted cell-ablation in Xenopus embryos using the conditional, toxic viral protein M2(H37A), Dev Dyn 236, 2159–2171.PubMedGoogle Scholar
  6. 6.
    Poss, K. D., Keating, M. T., and Nechiporuk, A. (2003). Tales of regeneration in zebrafish, Dev Dyn 226, 202–210.CrossRefPubMedGoogle Scholar
  7. 7.
    Hu, L., Yu, C., Jiang, Y., Han, J., Li, Z., Browne, P., Race, P. R., Knox, R. J., Searle, P. F., and Hyde, E. I. (2003). Nitroaryl phosphoramides as novel prodrugs for E. coli nitroreductase activation in enzyme prodrug therapy, J Med Chem 46, 4818–4821.CrossRefPubMedGoogle Scholar
  8. 8.
    Johansson, E., Parkinson, G. N., Denny, W. A., and Neidle, S. (2003). Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form, J Med Chem 46, 4009–4020.CrossRefPubMedGoogle Scholar
  9. 9.
    Bridgewater, J. A., Springer, C. J., Knox, R. J., Minton, N. P., Michael, N. P., and Collins, M. K. (1995). Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954, Eur J Cancer 31A, 2362–2370.CrossRefPubMedGoogle Scholar
  10. 10.
    Cui, W., Gusterson, B., and Clark, A. J. (1999). Nitroreductase-mediated cell ablation is very rapid and mediated by a p53-independent apoptotic pathway, Gene Ther 6, 764–770.CrossRefPubMedGoogle Scholar
  11. 11.
    Cui, W., Allen, N. D., Skynner, M., Gusterson, B., and Clark, A. J. (2001). Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain, Glia 34, 272–282.CrossRefPubMedGoogle Scholar
  12. 12.
    Isles, A. R., Ma, D., Milsom, C., Skynner, M. J., Cui, W., Clark, J., Keverne, E. B., and Allen, N. D. (2001). Conditional ablation of neurones in transgenic mice, J Neurobiol 47, 183–193.CrossRefPubMedGoogle Scholar
  13. 13.
    Felmer, R., Cui, W., and Clark, A. J. (2002). Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene, J Endocrinol 175, 487–498.CrossRefPubMedGoogle Scholar
  14. 14.
    Kwak, S. P., Malberg, J. E., Howland, D. S., Cheng, K. Y., Su, J., She, Y., Fennell, M., and Ghavami, A. (2007). Ablation of central nervous system progenitor cells in transgenic rats using bacterial nitroreductase system, J Neurosci Res 85, 1183–1193.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang, X. D., Shou, J., Wong, P., French, D. M., and Gao, W. Q. (2004). Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement, J Biol Chem 279, 24733–24744.CrossRefPubMedGoogle Scholar
  16. 16.
    Curado, S., Anderson, R. M., Jungblut, B., Mumm, J., Schroeter, E., and Stainier, D. Y. (2007). Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies, Dev Dyn 236, 1025–1035.CrossRefPubMedGoogle Scholar
  17. 17.
    Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D., and Parsons, M. J. (2007). Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase, Mech Dev 124, 218–229.Google Scholar
  18. 18.
    Davison, J. M., Akitake, C. M., Goll, M. G., Rhee, J. M., Gosse, N., Baier, H., Halpern, M. E., Leach, S. D., and Parsons, M. J. (2007). Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish, Dev Biol 304, 811–824.CrossRefPubMedGoogle Scholar
  19. 19.
    Fischer, J. A., Giniger, E., Maniatis, T., and Ptashne, M. (1988). GAL4 activates transcription in Drosophila, Nature 332, 853–856.CrossRefPubMedGoogle Scholar
  20. 20.
    Westerfield, M. (1993) The Zebrafish Book, University of Oregon, OR.Google Scholar
  21. 21.
    Koster, R. W., and Fraser, S. E. (2001). Tracing transgene expression in living zebrafish embryos, Dev Biol 233, 329–346.CrossRefPubMedGoogle Scholar
  22. 22.
    Scheer, N., and Campos-Ortega, J. A. (1999). Use of the Gal4-UAS technique for targeted gene expression in the zebrafish, Mech Dev 80, 153–158.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawakami, K., and Shima, A. (1999). Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio, Gene 240, 239–244.CrossRefPubMedGoogle Scholar
  24. 24.
    Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage, Proc Natl Acad Sci U S A 97, 11403–11408.CrossRefPubMedGoogle Scholar
  25. 25.
    Brand, A. H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development 118, 401–415.PubMedGoogle Scholar
  26. 26.
    Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s Swiss army knife, Genesis 34, 1–15.CrossRefPubMedGoogle Scholar
  27. 27.
    O’Brien, B. A., Harmon, B. V., Cameron, D. P., and Allan, D. J. (1996). Beta-cell apoptosis is responsible for the development of IDDM in the multiple low-dose streptozotocin model, J Pathol 178, 176–181.CrossRefPubMedGoogle Scholar
  28. 28.
    Danial, N. N., and Korsmeyer, S. J. (2004). Cell death: critical control points, Cell 116, 205–219.CrossRefPubMedGoogle Scholar
  29. 29.
    Hughes, J., and Gobe, G. (2007). Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers, Nephrology (Carlton) 12, 452–458.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Comparative MedicineJohns Hopkins School of MedicineBaltimoreUSA
  2. 2.Department of SurgeryJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations