Zebrafish pp 289-315 | Cite as

Morphological Analysis of the Zebrafish Digestive System

  • Andrew J. Trotter
  • Adam C. Parslow
  • Joan K. Heath
Part of the Methods in Molecular Biology book series (MIMB, volume 546)


The zebrafish provides an ideal model for the study of vertebrate organogenesis, including the formation of the digestive tract and its associated organs. Despite optical transparency of embryos, the internal position of the developing digestive system and its close juxtaposition with the yolk initially made morphological analysis relatively challenging, particularly during the first 3 d of development. However, methodologies have been successfully developed to address these problems and comprehensive morphologic analysis of the developing digestive system has now been achieved using a combination of light and fluorescence microscope approaches—including confocal analysis—to visualize wholemount and histological preparations of zebrafish embryos. Furthermore, the expanding number of antibodies that cross-react with zebrafish proteins and the generation of tissue-specific transgenic green fluorescent protein reporter lines that mark specific cell and tissue compartments have greatly enhanced our ability to successfully image the developing zebrafish digestive system.

Key words

Zebrafish Intestine Epithelium Goblet cells Enteroendocrine cells Histology Immunohistochemistry Transgenic lines 



We would like to thank Val Feakes and Stephen Cody for assistance and advice with histology and imaging, respectively. Val Feakes, Annie Ng, Tanya de Jong-Curtain, Heather Verkade and Elsbeth Richardson are acknowledged for their role in protocol development. This work was supported by Project Grants (280916 and 433614) to JKH from the NHMRC, Australia. Adam Parslow is a Ludwig Institute Ph.D student in the Department of Surgery at the Royal Melbourne and Western Hospitals, University of Melbourne and a recipient of an Australian Postgraduate Award.


  1. 1.
    Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., and Stainier, D. Y. (2001). Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 15, 1493–1505.CrossRefGoogle Scholar
  2. 2.
    Field, H. A., Ober, E. A., Roeser, T., and Stainier, D. Y. (2003). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253, 279–290.CrossRefGoogle Scholar
  3. 3.
    Ng, A. N., de Jong-Curtain, T. A., Mawdsley, D. J., White, S. J., Shin, J., Appel, B., Dong, P. D., Stainier, D. Y., and Heath, J. K. (2005). Formation of the digestive system in zebrafish. III. Intestinal epithelium morphogenesis. Dev Biol 286, 114–135.CrossRefGoogle Scholar
  4. 4.
    Field, H. A., Dong, P. D., Beis, D., and Stainier, D. Y. (2003). Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol 261, 197–208.CrossRefGoogle Scholar
  5. 5.
    Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K., and Pack, M. (2005). Intestinal growth and differentiation in zebrafish. Mech Dev 122, 157–173.CrossRefGoogle Scholar
  6. 6.
    Wallace, K. N., and Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12–29.CrossRefGoogle Scholar
  7. 7.
    Pauls, S., Zecchin, E., Tiso, N., Bortolussi, M., and Argenton, F. (2007). Function and regulation of zebrafish nkx2.2a during development of pancreatic islet and ducts. Dev Biol 304, 875–890.CrossRefGoogle Scholar
  8. 8.
    Andre, M., Ando, S., Ballagny, C., Durliat, M., Poupard, G., Briancon, C., and Babin, P. J. (2000). Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol 44, 249–252.Google Scholar
  9. 9.
    Her, G. M., Chiang, C. C., and Wu, J. L. (2004). Zebrafish intestinal fatty acid binding protein (I-FABP) gene promoter drives gut-specific expression in stable transgenic fish. Genesis 38, 26–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Her, G. M., Yeh, Y. H., and Wu, J. L. (2004). Functional conserved elements mediate intestinal-type fatty acid binding protein (I-FABP) expression in the gut epithelia of zebrafish larvae. Dev Dyn 230, 734–742.CrossRefPubMedGoogle Scholar
  11. 11.
    Wan, H., Korzh, S., Li, Z., Mudumana, S. P., Korzh, V., Jiang, Y.-J., Lin, S., and Gong, Z. (2006). Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter. Exp Cell Res 312, 1526–1539.CrossRefGoogle Scholar
  12. 12.
    Davison, J. M., Woo Park, S., Rhee, J. M., and Leach, S. D. (2008). Characterization of Kras-mediated pancreatic tumorigenesis in zebrafish. Methods Enzymol 438,391–417.CrossRefGoogle Scholar
  13. 13.
    Huang, H., Vogel, S. S., Liu, N., Melton, D. A., and Lin, S. (2001). Analysis of pancreatic development in living transgenic zebrafish embryos. Mol Cell Endocrinol 177, 117–124.CrossRefGoogle Scholar
  14. 14.
    Dong, P. D., Munson, C. A., Norton, W., Crosnier, C., Pan, X., Gong, Z., Neumann, C. J., and Stainier D. Y. (2007). Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet 39, 397–402.CrossRefGoogle Scholar
  15. 15.
    Dong, P. D., Provost, E., Leach, S. D., and Stainier, D. Y. (2008). Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev 22, 1445–1450.CrossRefGoogle Scholar
  16. 16.
    Crosnier, C., Vargesson, N., Gschmeissner, S., Ariza-McNaughton, L., Morrison, A., and Lewis, J. (2005). Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132, 1093–1104.CrossRefGoogle Scholar
  17. 17.
    17.Thévanaz, P., Ruttimann, U. E., Unser, M. (1998) IEEE Transactions on Image Processing. A pyramid approach to subpixel registration based on intensity. Volume 7: 27–41.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrew J. Trotter
    • 1
  • Adam C. Parslow
    • 1
  • Joan K. Heath
    • 1
  1. 1.Colon Molecular and Cell Biology LaboratoryLudwig Institute for Cancer Research, Royal Melbourne HospitalParkvilleAustralia

Personalised recommendations