Zebrafish pp 255-271 | Cite as

Live Cell Imaging of Zebrafish Leukocytes

  • Chris Hall
  • Maria Vega Flores
  • Kathy Crosier
  • Phil Crosier
Part of the Methods in Molecular Biology book series (MIMB, volume 546)


Zebrafish are ideally suited for the live imaging of early immune cell compartments. Macrophages that initially appear on the yolk surface prior to the onset of circulation are the first functional immune cells within the embryo, predating the emergence of the first granulocytic cells—the heterophilic neutrophils. Both cell types have been shown in zebrafish to contribute to a robust early innate immune system, capable of clearing systemic infections and participating in wound healing. Early imaging of these cells within zebrafish relied on differential interference contrast (DIC) optics because of their superficial locations in the embryo and the optical transparency of embryonic tissues. Recently, the creation of a number of transgenic reporter lines possessing fluorescently marked myelomonocytic compartments provides the potential to live image these cells during the inflammatory response, in real-time, within a whole animal context. Live imaging during the different stages of inflammation using this expanding library of reporter lines, coupled with the ability to model aspects of human disease in the zebrafish system, have the potential to provide significant insights into inflammation and diseases associated with its dysregulation.

Key words

Zebrafish Live cell imaging Neutrophils Macrophages Inflammation Phagocytosis Tg(lyz:EGFP/DsRED2) Transgenic pHrodo Escherichia coli BioParticles 



The authors would like to thank Jacqui Ross and other members of the Biological Imaging Research Unit (The University of Auckland) for imaging assistance; Alhad Mahagaonkar for management of the zebrafish facility; and Annie Chien and Lisa Pullin for expert technical assistance and Makoto Kamei for imaging advice. This work was supported by a grant from the Foundation for Research Science and Technology.


  1. 1.
    Martin, P., and Leibovich, S. J. (2005). Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15, 599–607.CrossRefPubMedGoogle Scholar
  2. 2.
    Anghelina, M., Moldovan, L., Zabuawala, T., Ostrowski, M. C., and Moldovan, N. I. (2006). A subpopulation of peritoneal macrophages form capillarylike lumens and branching patterns in vitro. J Cell Mol Med 10, 708–715.CrossRefPubMedGoogle Scholar
  3. 3.
    Hume, D. A. (2006). The mononuclear phagocyte system. Curr Opin Immunol 18, 49–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Germain, R. N., Miller, M. J., Dustin, M. L., and Nussenzweig, M. C. (2006). Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6, 497–507.CrossRefPubMedGoogle Scholar
  5. 5.
    Germain, R. N., Castellino, F., Chieppa, M., Egen, J. G., Huang, A. Y., Koo, L. Y., and Qi, H. (2005). An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 17, 431–441.CrossRefPubMedGoogle Scholar
  6. 6.
    Scheinecker, C. (2005). Application of in vivo microscopy: evaluating the immune response in living animals. Arthritis Res Ther 7, 246–252.CrossRefPubMedGoogle Scholar
  7. 7.
    Herbomel, P., Thisse, B., and Thisse, C. (1999). Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735–3745.PubMedGoogle Scholar
  8. 8.
    Renshaw, S. A., Loynes, C. A., Trushell, D. M., Elworthy, S., Ingham, P. W., and Whyte, M. K. (2006). A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976–3978.CrossRefPubMedGoogle Scholar
  9. 9.
    Mathias, J. R., Perrin, B. J., Liu, T. X., Kanki, J., Look, A. T., and Huttenlocher, A. (2006). Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80, 1281–1288.CrossRefPubMedGoogle Scholar
  10. 10.
    Mathias, J. R., Dodd, M. E., Walters, K. B., Rhodes, J., Kanki, J. P., Look, A. T., and Huttenlocher, A. (2007). Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci 120, 3372–3383.CrossRefPubMedGoogle Scholar
  11. 11.
    Le Guyader, D., Redd, M. J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., Mordelet, E., Zapata, A., Shinomiya, H., and Herbomel, P. (2008). Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. Blood 111, 132–141.CrossRefPubMedGoogle Scholar
  12. 12.
    Clay, H., Davis, J. M., Beery, D., Huttenlocher, A., Lyons, S. E., and Ramakrishnan, L. (2007). Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2, 29–39.CrossRefPubMedGoogle Scholar
  13. 13.
    Meijer, A. H., van der Sar, A. M., Cunha, C., Lamers, G. E., Laplante, M. A., Kikuta, H., Bitter, W., Becker, T. S., and Spaink, H. P. (2008). Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev Comp Immunol 32, 36–49.CrossRefPubMedGoogle Scholar
  14. 14.
    Davis, J. M., Clay, H., Lewis, J. L., Ghori, N., Herbomel, P., and Ramakrishnan, L. (2002). Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Immunity 17, 693–702.CrossRefPubMedGoogle Scholar
  15. 15.
    van der Sar, A. M., Musters, R. J., van Eeden, F. J., Appelmelk, B. J., Vandenbroucke-Grauls, C. M., and Bitter, W. (2003). Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5, 601–611.CrossRefPubMedGoogle Scholar
  16. 16.
    van der Sar, A. M., Stockhammer, O. W., van der Laan, C., Spaink, H. P., Bitter, W., and Meijer, A. H. (2006). MyD88 innate immune function in a zebrafish embryo infection model. Infect Immun 74, 2436–2441.CrossRefPubMedGoogle Scholar
  17. 17.
    Bertrand, J. Y., Kim, A. D., Violette, E. P., Stachura, D. L., Cisson, J. L., and Traver, D. (2007). Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147–4156.CrossRefPubMedGoogle Scholar
  18. 18.
    Redd, M. J., Kelly, G., Dunn, G., Way, M., and Martin, P. (2006). Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63, 415–422.CrossRefPubMedGoogle Scholar
  19. 19.
    Hall, C., Flores, M. V., Storm, T., Crosier, K., and Crosier, P. (2007). The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 7, 42.CrossRefPubMedGoogle Scholar
  20. 20.
    Davidson, A. J., and Zon, L. I. (2004). The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23, 7233–7246.CrossRefPubMedGoogle Scholar
  21. 21.
    Zapata, A., Diez, B., Cejalvo, T., Gutierrez-de Frias, C., and Cortes, A. (2006). Ontogeny of the immune system of fish. Fish Shellfish Immunol 20, 126–136.CrossRefPubMedGoogle Scholar
  22. 22.
    Trede, N. S., Langenau, D. M., Traver, D., Look, A. T., and Zon, L. I. (2004). The use of zebrafish to understand immunity. Immunity 20, 367–379.CrossRefPubMedGoogle Scholar
  23. 23.
    Willett, C. E., Cortes, A., Zuasti, A., and Zapata, A. G. (1999). Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev Dyn 214, 323–336.CrossRefPubMedGoogle Scholar
  24. 24.
    Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., and Sin, Y. M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28, 9–28.CrossRefPubMedGoogle Scholar
  25. 25.
    Westerfield, M. (2000). The Zebrafish Book. University of Oregon Press, Eugene, 4th ed.Google Scholar
  26. 26.
    Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. (2004). Image Processing with. ImageJ. Biophoton Int 11, 36–42.Google Scholar
  27. 27.
    Kissa, K., Murayama, E., Zapata, A., Cortes, A., Perret, E., Machu, C., and Herbomel, P. (2007). Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 111, 1147–1156CrossRefPubMedGoogle Scholar
  28. 28.
    Murayama, E., Kissa, K., Zapata, A., Mordelet, E., Briolat, V., Lin, H. F., Handin, R. I., and Herbomel, P. (2006). Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 25, 963–975.CrossRefPubMedGoogle Scholar
  29. 29.
    Winsauer, G., and de Martin, R. (2007). Resolution of inflammation: intracellular feedback loops in the endothelium. Thromb Haemost 97, 364–369.PubMedGoogle Scholar
  30. 30.
    Sepich, D. S., Wegner, J., O’Shea, S., and Westerfield, M. (1998). An altered intron inhibits synthesis of the acetylcholine receptor alpha-subunit in the paralyzed zebrafish mutant nic1. Genetics 148, 361–372.PubMedGoogle Scholar
  31. 31.
    Lawson, N. D., and Weinstein, B. M. (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248, 307–318.CrossRefPubMedGoogle Scholar
  32. 32.
    Ward, A. C., McPhee, D. O., Condron, M. M., Varma, S., Cody, S. H., Onnebo, S. M., Paw, B. H., Zon, L. I., and Lieschke, G. J. (2003). The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 102, 3238–3240.CrossRefPubMedGoogle Scholar
  33. 33.
    Hsu, K., Traver, D., Kutok, J. L., Hagen, A., Liu, T. X., Paw, B. H., Rhodes, J., Berman, J. N., Zon, L. I., Kanki, J. P., and Look, A. T. (2004). The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104, 1291–1297.CrossRefPubMedGoogle Scholar
  34. 34.
    Traver, D., Paw, B. H., Poss, K. D., Penberthy, W. T., Lin, S., and Zon, L. I. (2003). Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4, 1238–1246.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu, H., Traver, D., Davidson, A. J., Dibiase, A., Thisse, C., Thisse, B., Nimer, S., and Zon, L. I. (2005). Regulation of the lmo2 promoter during hematopoietic and vascular development in zebrafish. Dev Biol 281, 256–269.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chris Hall
    • 1
  • Maria Vega Flores
    • 1
  • Kathy Crosier
    • 1
  • Phil Crosier
    • 1
  1. 1.Department of Molecular Medicine and Pathology, School of Medical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations