Neural Cell Transplantation pp 187-195

Part of the Methods in Molecular Biology™ book series (MIMB, volume 549)

A Rat Middle Cerebral Artery Occlusion Model and Intravenous Cellular Delivery

  • Masanori Sasaki
  • Osamu Honmou
  • Jeffery D. Kocsis
Protocol

Summary

A useful experimental model to study the pathophysiology of cerebral ischemia without craniectomy is the middle cerebral artery occlusion (MCAO) model. In this model, an intraluminal suture is advanced from the internal carotid artery to occlude the base of the MCA. Standardized procedures in terms of suture size, animal weight, and the details of intraluminal suture insertion are well established. This procedure can produce reversible occlusion after insertion of the intraluminal suture for a specified period of time, or a permanent occlusion by leaving the suture in place. This model has been useful in the study of both the normal pathophysiology of cerebral ischemia and in assessing interventional therapeutic approaches for stroke therapy. One approach has been the intravenous delivery of bone marrow-derived mescenchymal stem cells at various times after MCAO. Histological and magnetic resonance imaging have been used to quantify infarction volume in this model system.

Key words:

Middle cerebral artery occlusion Stroke TTC Transplantation Intravenous 

References

  1. 1.
    Eklof B, Siesjo BK (1972) The effect of bilateral carotid artery ligation upon acid-base parameters and substrate levels in the rat brain. Acta Physiol Scand;86(4):528–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Salford LG, Plum F, Brierley JB (1973) Graded hypoxia-oligemia in rat brain. II. Neuropathological alterations and their implications. Arch Neurol;29(4):234–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke;20: 84–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Garcia JH, Yoshida Y, Chen H, Li Y, Zhang ZG, Lian J, Chen S, Chopp M (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol;142:623–35.PubMedGoogle Scholar
  5. 5.
    Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M (1995) Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol;146:1045–51.PubMedGoogle Scholar
  6. 6.
    Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol;4(2):e22.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest;111(12):1843–51.PubMedGoogle Scholar
  8. 8.
    Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA, Thinakaran G (2004) Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol;24(21):9456–69.PubMedCrossRefGoogle Scholar
  9. 9.
    Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol;1(2):92–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke;38:2150–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD (2004) A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res;1007:1–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2005) I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience;136:161–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, Kocsis JD (2006) Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol;199(1):56–66.PubMedCrossRefGoogle Scholar
  14. 14.
    Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology;56:1666–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther;9:189–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O, Houkin K, Matsunaga T, Niitsu Y (2005) Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci;96(3):149–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Mahmood A, Lu D, Wang L, Chopp M (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma;19(12):1609–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, Kocsis JD (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain;129(Pt 10):2734–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2006) Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res;84(7):1495–504.PubMedCrossRefGoogle Scholar
  20. 20.
    Ukai R, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2007) Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma;24(3):508–20.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Masanori Sasaki
    • 1
  • Osamu Honmou
    • 1
  • Jeffery D. Kocsis
    • 1
  1. 1.Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of Medicine, VA Connecticut Healthcare SystemNew HavenUSA

Personalised recommendations