Neural Cell Transplantation pp 3-16

Part of the Methods in Molecular Biology™ book series (MIMB, volume 549)

Neural Transplantation and Stem Cells



Recent results have raised important questions on our ability to amplify stem cell populations in sufficient numbers as to be useful for therapy. Several reports have indicated that human stem cell populations harvested from the adult have low or undetectable telomerase levels, age in culture, and may not be propagated indefinitely. Other groups have shown that stem cells age and as such, their properties will have changed depending on the age of the individual from which they are harvested, and the time for which they are propagated in culture. Other groups have shown that cells maintained in culture may undergo alterations as they are propagated, and that these alterations may alter the predicted behavior of stem cells. Yet others have shown that human cells differ from their counterparts in other species in significant ways and have identified important difficulties in assessing cells in a xeno environment. Clinical colleagues have identified issues of variability and difficulties in the long-term follow-up that is being requested. Researchers in the stem cell field focused on translational work need to develop a practical plan that takes into account such difficulties while developing manufacturing protocols, designing animal studies, or developing trial protocols. Such proactive planning will be critical in ensuring a successful transition from the bench to the clinic.

Key words

Neural stem cells Stem cell Transplantation Cell therapy Clinical trials Immune response Adult stem cells Animal models 


  1. 1.
    Carpenter, M. K., Rosler, E. and Rao, M. S. (2003). Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Luo, Y., Schwartz, C., Shin, S., Zeng, X., Chen, N., Wang, Y., Yu, X. and Rao, M. S. (2006). A focused microarray to assess dopa­minergic and glial cell differentiation from fetal tissue or embryonic stem cells. Stem Cells 24, 865–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Zeng, X., Miura, T., Luo, Y., Bhattacharya, B., Condie, B., Chen, J., Ginis, I., Lyons, I., Mejido, J., Puri, R. K., Rao, M. S. and Freed, W. J. (2004). Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22, 292–312.PubMedCrossRefGoogle Scholar
  4. 4.
    Li, H., Liu, Y., Shin, S., Sun, Y., Loring, J. F., Mattson, M. P., Rao, M. S. and Zhan, M. (2006). Transcriptome coexpression map of human embryonic stem cells. BMC Genomics 7, 103.PubMedCrossRefGoogle Scholar
  5. 5.
    Mayer-Proschel, M., Kalyani, A. J., Mujtaba, T. and Rao, M. S. (1997). Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Miura, T., Mattson, M. P. and Rao, M. S. (2004). Cellular lifespan and senescence signaling in embryonic stem cells. Aging Cell 3, 333–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Ellis, P., Fagan, B. M., Magness, S. T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M. and Pevny, L. (2004). Sox2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26, 148–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwartz, C. M., Spivak, C. E., Baker, S. C., McDaniel, T. K., Loring, J. F., Nguyen, C., Chrest, F. J., Wersto, R., Arenas, E., Zeng, X., Freed, W. J. and Rao, M. S. (2005). Ntera2: A model system to study dopaminergic differentiation of human embryonic stem cells. Stem Cells Dev 14, 517–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Shin, S., Sun, Y., Liu, Y., Khaner, H., Svant, S., Cai, J., Xu, X. Q., Davidson, B. P., Stice, S. L., Smith, A. K., Goldman, S. A., Reubinoff, B. E., Zhan, M., Rao, M. S. and Chesnut, J. D. (2007). Whole genome analysis of human neural stem cells derived from embryonic stem cells and stem and progenitor cells isolated from fetal tissue. Stem Cells 25, 1298–306.Google Scholar
  10. 10.
    Rao, M. S. and Anderson, D. J. (1997). Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J Neurobiol 32, 722–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Zeng, X., Chen, J., Deng, X., Liu, Y., Rao, M. S., Cadet, J. L. and Freed, W. J. (2006). An in vitro model of human dopaminergic neurons derived from embryonic stem cells: Mpp+ toxicity and gdnf neuroprotection. Neuropsychopharmacology 31, 2708–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Turksen, K. and Rao, M. (2005). Issues in human embryonic stem cell biology. Stem Cell Rev 1, 79–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Magnus, T., Liu, Y., Parker, G. C. and Rao, M. S. (2007). Stem cell myths. Philos Trans R Soc Lond B Biol Sci., in press.Google Scholar
  14. 14.
    Ginis, I. and Rao, M. S. (2003). Toward cell replacement therapy: Promises and caveats. Exp Neurol 184, 61–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Choong, C. and Rao, M. S. (2007). Human embryonic stem cells. Neurosurg Clin N Am 18, 1–14, vii.PubMedCrossRefGoogle Scholar
  16. 16.
    Zeng, X. and Rao, M. S. (2006). Human embryonic stem cells: Long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 145, 1348–58.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun, Y., Li, H., Liu, Y., Shin, S., Mattson, M. P., Rao, M. S. and Zhan, M. (2007). Cross-species transcriptional profiles establish a functional portrait of embryonic stem cells. Genomics 89, 22–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Gibson, J., Ho, P. J. and Joshua, D. (2004). Evolving transplant options for multiple myeloma: Autologous and nonmyeloablative allogenic. Transplant Proc 36, 2501–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Terstegge, S., Laufenberg, I., Pochert, J., Schenk, S., Itskovitz-Eldor, J., Endl, E. and Brustle, O. (2007). Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96, 195–201.PubMedCrossRefGoogle Scholar
  20. 20.
    Sun, Y., Li, H., Yang, H., Rao, M. S. and Zhan, M. (2006). Mechanisms controlling embryonic stem cell self-renewal and differentiation. Crit Rev Eukaryot Gene Expr 16, 211–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Parker, G. C., Anastassova-Kristeva, M., Eisenberg, L. M., Rao, M. S., Williams, M. A., Sanberg, P. R. and English, D. (2005). Stem cells: Shibboleths of development, Part 2: Toward a functional definition. Stem Cells Dev 14, 463–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Spivakov, M. and Fisher, A. G. (2007). Epigenetic signatures of stem-cell identity. Nat Rev Genet 8, 263–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Bibikova, M., Chudin, E., Wu, B., Zhou, L., Garcia, E. W., Liu, Y., Shin, S., Plaia, T. W., Auerbach, J. M., Arking, D. E., Gonzalez, R., Crook, J., Davidson, B., Schulz, T. C., Robins, A., Khanna, A., Sartipy, P., Hyllner, J., Vanguri, P., Savant-Bhonsale, S., Smith, A. K., Chakravarti, A., Maitra, A., Rao, M., Barker, D. L., Loring, J. F. and Fan, J. B. (2006). Human embryonic stem cells have a unique epigenetic signature. Genome Res 16, 1075–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Miura, T., Luo, Y., Khrebtukova, I., Brandenberger, R., Zhou, D., Thies, R. S., Vasicek, T., Young, H., Lebkowski, J., Carpenter, M. K. and Rao, M. S. (2004). Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev 13, 694–715.PubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi, J. (2006). Stem cell therapy for Parkinson’s disease. Ernst Schering Res Found Workshop 229–44.Google Scholar
  26. 26.
    Bonnevie, L., Bel, A., Sabbah, L., Al Attar, N., Pradeau, P., Weill, B., Le Deist, F., Bellamy, V., Peyrard, S., Menard, C., Desnos, M., Bruneval, P., Binder, P., Hagege, A. A., Puceat, M. and Menasche, P. (2007). Is xenotransplantation of embryonic stem cells a realistic option? Transplantation 83, 333–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Hewitt, Z., Priddle, H., Thomson, A. J., Wojtacha, D. and McWhir, J. (2007). Ablation of undifferentiated human embryonic stem cells: Exploiting innate immunity against the gal alpha1–3galbeta1–4glcnac-r (alpha-gal) epitope. Stem Cells 25, 10–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M. K., Itskovitz-Eldor, J. and Rao, M. S. (2004). Differences between human and mouse embryonic stem cells. Dev Biol 269, 360–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhan, M., Miura, T., Xu, X. and Rao, M. S. (2005). Conservation and variation of gene regulation in embryonic stem cells assessed by comparative genomics. Cell Biochem Biophys 43, 379–405.PubMedCrossRefGoogle Scholar
  30. 30.
    Qazilbash, M. H., Saliba, R. M., Hosing, C., Mendoza, F., Qureshi, S. R., Weber, D. M., Wang, M., Flosser, T., Couriel, D. R., De Lima, M., Kebriaei, P., Popat, U., Alousi, A. M., Champlin, R. E. and Giralt, S. A. (2007). Autologous stem cell transplantation is safe and feasible in elderly patients with multiple myeloma. Bone Marrow Transplant 39, 279–83.PubMedCrossRefGoogle Scholar
  31. 31.
    Molcayni, M., Bentz, K., Maegele, M., Simanski, C., Carlitscheck, C., Schneider, A., Hescheler, J., Bouillon, B., Schafer, U. and Neugebauer, E. (2007). Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 24, 216–25.CrossRefGoogle Scholar
  32. 32.
    Cheng, A., Coksaygan, T., Tang, H., Khatri, R., Balice-Gordon, R. J., Rao, M. S. and Mattson, M. P. (2007). Truncated tyrosine kinase b brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J Neurochem 100, 1515–30.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Invitrogen CorporationGrand IslandUSA

Personalised recommendations