What Antimicrobial Resistance Has Taught Us About Horizontal Gene Transfer

  • Miriam Barlow
Part of the Methods in Molecular Biology book series (MIMB, volume 532)

Abstract

Horizontal gene transfer (HGT) has been responsible for the dissemination of numerous antimicrobial-resistance determinants throughout diverse bacterial species. The rapid and broad dissemination of resistance determinants by HGT, and subsequent selection for resistance imposed by the use of antimicrobials, threatens to undermine the usefulness of antimicrobials. However, vigilant surveillance of the emerging antimicrobial resistance in clinical settings and subsequent studies of resistant isolates create a powerful system for studying HGT and detecting rare events. Two of the most closely monitored phenotypes are resistance to \(\beta\)-lactams and resistance to fluoroquinolones. Studies of resistance to these antimicrobials have revealed that (1) transformation occurs between different species of bacteria including some recipient species that were not previously known to be competent for natural transformation; (2) transduction may be playing an important role in generating novel methicillin-resistant Staphylococcus aureus (MRSA) strains, although the details of transferring the SCCmec element are not yet fully understood; (3) Resistance genes are probably moving to plasmids from chromosomes more rapidly than in the past; and (4) Resistance genes are aggregating upon plasmids. The linkage of numerous resistance genes on individual plasmids may underlie the persistence of resistance to specific antimicrobials even when use of those antimicrobials is discontinued. Further studies of HGT and methods for controlling HGT may be necessary to maintain the usefulness of antimicrobials.

Keywords

\(\beta\)-lactamase qnr SCCmec parC penicillin-binding protein 

References

  1. 1.
    Ligon, B. L. (2004) Sir Howard Walter Florey – the force behind the development of penicillin. Semin Pediatr Infect Dis 15, 109–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Ligon, B. L. (2004) Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15, 52–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Wainwright, M. (2004) Hitler’s penicillin. Perspect Biol Med 47, 189–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Livermore, D. (2004) Can better prescribing turn the tide of resistance? Nat Rev Microbiol 2, 73–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Shlaes, D. M. (2003) The abandonment of antibacterials: why and wherefore? Curr Opin Pharmacol 3, 470–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Spellberg, B., Powers, J. H., Brass, E. P., Miller, L. G., Edwards, J. E., Jr. (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38, 1279–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Clancy, J., Dib-Hajj, F., Petitpas, J. W., Yuan, W. (1997) Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 41, 2719–23.PubMedGoogle Scholar
  8. 8.
    Medeiros, A. A. (1997) Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis 24, S19–45.PubMedGoogle Scholar
  9. 9.
    Maple, P., Brumfitt, W., Hamilton-Miller, J. M. (1990) A review of the antimicrobial activity of the fluoroquinolones. J Chemother 2, 280–94.PubMedGoogle Scholar
  10. 10.
    Pantosti, A., Sanchini, A., Monaco, M. (2007) Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2, 323–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Shakil, S., Khan, R., Zarrilli, R., Khan, A. U. (2008) Aminoglycosides versus bacteria – a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15, 5–14.CrossRefPubMedGoogle Scholar
  12. 12.
    Roberts, M. C. (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282, 147–59.CrossRefPubMedGoogle Scholar
  13. 13.
    Roberts, M. C. (2004) Resistance to macro- lide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 28, 47–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Roberts, M. C. (2004) Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. Curr Drug Targets Infect Disord 4, 207–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Willems, R. J., Bonten, M. J. (2007) Glycopeptide-resistant enterococci: deciphering virulence, resistance and epidemicity. Curr Opin Infect Dis 20, 384–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Roberts, M. C. (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245, 195–203.CrossRefPubMedGoogle Scholar
  17. 17.
    Hanssen, A. M., Ericson Sollid, J. U. (2006) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46, 8–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Weldhagen, G. F. (2004) Integrons and beta-lactamases – a novel perspective on resistance. Int J Antimicrob Agents 23, 556–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Robicsek, A., Jacoby, G. A., Hooper, D. C. (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6, 629–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Livermore, D. M. (1996) Are all beta-lactams created equal? Scand J Infect Dis Suppl 101, 33–43.PubMedGoogle Scholar
  21. 21.
    Lambert, P. A. (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57, 1471–85.CrossRefPubMedGoogle Scholar
  22. 22.
    Hakenbeck, R., Grebe, T., Zahner, D., Stock, J. B. (1999) beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol Microbiol 33, 673–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Canton, R., Coque, T. M. (2006) The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 9, 466–75.CrossRefPubMedGoogle Scholar
  24. 24.
    Poole, K. (2004) Resistance to beta-lactam antibiotics. Cell Mol Life Sci 61, 2200–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Bhavnani, S. M., Hammel, J. P., Jones, R. N., Ambrose, P. G. (2005) Relationship between increased levofloxacin use and decreased susceptibility of Streptococcus pneumoniae in the United States. Diagn Microbiol Infect Dis 51, 31–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Tran, J. H., Jacoby, G. A. (2002) Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 99, 5638–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Tran, J. H., Jacoby, G. A., Hooper, D. C. (2005) Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 49, 118–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Martin, J. F., Ullan, R. V., Casqueiro, J. (2004) Novel genes involved in cephalosporin biosynthesis: the three-component isopenicillin N epimerase system. Adv Biochem Eng Biotechnol 88, 91–109.PubMedGoogle Scholar
  29. 29.
    Martin, J. F. (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182, 2355–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin, J. F. (1998) New aspects of genes and enzymes for beta-lactam antibiotic biosynthesis. Appl Microbiol Biotechnol 50, 1–15.CrossRefPubMedGoogle Scholar
  31. 31.
    Lopez, R. (2006) Pneumococcus: the sugar-coated bacteria. Int Microbiol 9, 179–90.PubMedGoogle Scholar
  32. 32.
    Avery, O. T., Macleod, C. M., Mccarty, M. (2000) The Classic – Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III (Reprinted). Clin Orthop Relat Res Suppl, 379, S4–8.Google Scholar
  33. 33.
    Desai, B. V., Morrison, D. A. (2006) An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae. J Bacteriol 188, 5177–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Hakenbeck, R., Balmelle, N., Weber, B., Gardes, C., Keck, W., De Saizieu, A. (2001) Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae. Infect Immun 69, 2477–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Hoffman-Roberts, H. L., Babcock, C. E., Mitropoulos, I. F. (2005) Investigational new drugs for the treatment of resistant pneumococcal infections. Expert Opin Investig Drugs 14, 973–95.CrossRefPubMedGoogle Scholar
  36. 36.
    Passali, D., Lauriello, M., Passali, G. C., Passali, F. M., Bellussi, L. (2007) Group A streptococcus and its antibiotic resistance. Acta Otorhinolaryngol Ital 27, 27–32.PubMedGoogle Scholar
  37. 37.
    Pletz, M. W., Mcgee, L., Van Beneden, C. A., Petit, S., Bardsley, M., Barlow, M., Klugman, K. P. (2006) Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob Agents Chemother 50, 943–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Yan, S. S., Fox, M. L., Holland, S. M., Stock, F., Gill, V. J., Fedorko, D. P. (2000) Resistance to multiple fluoroquinolones in a clinical isolate of Streptococcus pyogenes: identification of gyrA and parC and specification of point mutations associated with resistance. Antimicrob Agents Chemother 44, 3196–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Piddock, L. J. (1999) Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58(Suppl 2), 11–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Richter, S. S., Diekema, D. J., Heilmann, K. P., Almer, L. S., Shortridge, V. D., Zeitler, R., Flamm, R. K., Doern, G. V. (2003) Fluoroquinolone resistance in Streptococcus pyogenes. Clin Infect Dis 36, 380–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Reinert, R. R., Lutticken, R., Al-Lahham, A. (2004) High-level fluoroquinolone resistance in a clinical Streptoccoccus pyogenes isolate in Germany. Clin Microbiol Infect 10, 659–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Koomey, M. (1998) Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer. APMIS Suppl 84, 56–61.PubMedGoogle Scholar
  43. 43.
    Hamilton, H. L., Dillard, J. P. (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59, 376–85.CrossRefPubMedGoogle Scholar
  44. 44.
    Hamilton, H. L., Schwartz, K. J., Dillard, J. P. (2001) Insertion-duplication mutagenesis of neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol 183, 4718–26.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang, S. A., Harvey, A. B., Conner, S. M., Zaidi, A. A., Knapp, J. S., Whittington, W. L., Del Rio, C., Judson, F. N., Holmes, K. K. (2007) Antimicrobial resistance for Neisseria gonorrhoeae in the United States, 1988 to 2003: the spread of fluoroquinolone resistance. Ann Intern Med 147, 81–8.PubMedGoogle Scholar
  46. 46.
    Campos-Outcalt, D. (2007) Practice alert: CDC no longer recommends quinolones for treatment of gonorrhea. J Fam Pract 56, 554–8.PubMedGoogle Scholar
  47. 47.
    Yokoi, S., Deguchi, T., Ozawa, T., Yasuda, M., Ito, S., Kubota, Y., Tamaki, M., Maeda, S. (2007) Threat to cefixime treatment for gonorrhea. Emerg Infect Dis 13, 1275–7.PubMedGoogle Scholar
  48. 48.
    Spratt, B. G., Bowler, L. D., Zhang, Q. Y., Zhou, J., Smith, J. M. (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34, 115–25.CrossRefPubMedGoogle Scholar
  49. 49.
    Takahata, S., Senju, N., Osaki, Y., Yoshida, T., Ida, T. (2006) Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 50, 3638–45.CrossRefPubMedGoogle Scholar
  50. 50.
    Bowler, L. D., Zhang, Q. Y., Riou, J. Y., Spratt, B. G. (1994) Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J Bacteriol 176, 333–7.PubMedGoogle Scholar
  51. 51.
    Enright, M. C. (2003) The evolution of a resistant pathogen – the case of MRSA. Curr Opin Pharmacol 3, 474–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Hartman, B. J., Tomasz, A. (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158, 513–6.PubMedGoogle Scholar
  53. 53.
    Brown, D. F., Reynolds, P. E. (1980) Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 122, 275–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Deurenberg, R. H., Vink, C., Kalenic, S., Friedrich, A. W., Bruggeman, C. A., Stobberingh, E. E. (2007) The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 13, 222–35.CrossRefPubMedGoogle Scholar
  55. 55.
    Katayama, Y., Takeuchi, F., Ito, T., Ma, X. X., Ui-Mizutani, Y., Kobayashi, I., Hiramatsu, K. (2003) Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J Bacteriol 185, 2711–22.CrossRefPubMedGoogle Scholar
  56. 56.
    Mongkolrattanothai, K., Boyle, S., Murphy, T. V., Daum, R. S. (2004) Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob Agents Chemother 48, 1823–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Fuda, C. C., Fisher, J. F., Mobashery, S. (2005) Beta-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell Mol Life Sci 62, 2617–33.CrossRefPubMedGoogle Scholar
  58. 58.
    Wu, S. W., De Lencastre, H., Tomasz, A. (2001) Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J Bacteriol 183, 2417–24.CrossRefPubMedGoogle Scholar
  59. 59.
    Couto, I., Wu, S. W., Tomasz, A., De Lencastre, H. (2003) Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to species. J Bacteriol 185, 645–53.CrossRefPubMedGoogle Scholar
  60. 60.
    Lindsay, J. A., Holden, M. T. (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6, 186–201.CrossRefPubMedGoogle Scholar
  61. 61.
    Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H., Spratt, B. G. (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99, 7687–92.CrossRefPubMedGoogle Scholar
  62. 62.
    Robinson, D. A., Enright, M. C. (2003) Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47, 3926–34.CrossRefPubMedGoogle Scholar
  63. 63.
    Iandolo, J. J., Worrell, V., Groicher, K. H., Qian, Y., Tian, R., Kenton, S., Dorman, A., Ji, H., Lin, S., Loh, P., Qi, S., Zhu, H., Roe, B. A. (2002) Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109–18.CrossRefPubMedGoogle Scholar
  64. 64.
    Melles, D. C., Gorkink, R. F., Boelens, H. A., Snijders, S. V., Peeters, J. K., Moorhouse, M. J., Van Der Spek, P. J., Van Leeuwen, W. B., Simons, G., Verbrugh, H. A., Van Belkum, A. (2004) Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest 114, 1732–40.PubMedGoogle Scholar
  65. 65.
    Schaefler, S. (1982) Bacteriophage-mediated acquisition of antibiotic resistance by Staphylococcus aureus type 88. Antimicrob Agents Chemother 21, 460–7.PubMedGoogle Scholar
  66. 66.
    Barlow, M., Hall, B. G. (2002) Phylogenetic analysis shows that the OXA \(\beta\)-lactamase genes have been on plasmids for millions of years. J Mol Evol 55, 314–21.CrossRefPubMedGoogle Scholar
  67. 67.
    Barlow, M., Reik, R. A., Jacobs, S. D., Medina, M., Meyer, M. P., Mcgowan, J. E., Jr., Tenover, F. C. (2008) High rate of mobilization for blaCTX-Ms. Emerg Infect Dis 14, 423–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Rodriguez, M. M., Power, P., Radice, M., Vay, C., Famiglietti, A., Galleni, M., Ayala, J. A., Gutkind, G. (2004) Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob Agents Chemother 48, 4895–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Boyd, D. A., Olson, A. B., Silverman M., Mcgeer, A., Willey, B. M., Pong-Porter, V., Daneman, N., Mulvey, M. R. (2004) Identification of a progenitor of the CTX-M-9 group of extended spectrum beta-lactamases from Kluyvera spp. isolated in Guyana. In 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 American Society for Microbiology, City.Google Scholar
  70. 70.
    Bonnet, R. (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48, 1–14.CrossRefPubMedGoogle Scholar
  71. 71.
    Poirel, L., Kampfer, P., Nordmann, P. (2002) Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 46, 4038–40.CrossRefPubMedGoogle Scholar
  72. 72.
    Farmer, J. J., 3rd, Fanning, G. R., Huntley-Carter, G. P., Holmes, B., Hickman, F. W., Richard, C., Brenner, D. J. (1981) Kluyvera, a new (redefined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens. J Clin Microbiol 13, 919–33.PubMedGoogle Scholar
  73. 73.
    Hall, R. M. (2007) Antibiotic resistance gene cluster of pAPEC-O1-R. Antimicrob Agents Chemother 51, 3461–2.CrossRefPubMedGoogle Scholar
  74. 74.
    Ktari, S., Arlet, G., Mnif, B., Gautier, V., Mahjoubi, F., Ben Jmeaa, M., Bouaziz, M., Hammami, A. (2006) Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-beta-lactamase, CTX-M-15 extended-spectrum beta-lactamase, and CMY-4 AmpC beta-lactamase in a Tunisian university hospital. Antimicrob Agents Chemother 50, 4198–201.CrossRefPubMedGoogle Scholar
  75. 75.
    Lawrence, J. (1999) Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev 9, 642–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Lawrence, J. G. (2000) Clustering of antibiotic resistance genes: beyond the selfish operon. ASM News 66, 281–6.Google Scholar
  77. 77.
    Gould, I. M. (2002) Antibiotic policies and control of resistance. Curr Opin Infect Dis 15, 395–400.PubMedGoogle Scholar
  78. 78.
    Austin, D. J., Kristinsson, K. G., Anderson, R. M. (1999) The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A 96, 1152–6.CrossRefPubMedGoogle Scholar
  79. 79.
    Giamarellou, H., Antoniadou, A. (1997) The effect of monitoring of antibiotic use on decreasing antibiotic resistance in the hospital. Ciba Found Symp 207, 76–86.PubMedGoogle Scholar
  80. 80.
    Monroe, S., Polk, R. (2000) Antimicrobial use and bacterial resistance. Curr Opin Microbiol 3, 496–501.CrossRefPubMedGoogle Scholar
  81. 81.
    Gerding, D. N. (2000) Antimicrobial cycling: lessons learned from the aminoglycoside experience. Infect Control Hosp Epidemiol 21, S12–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Moss, W. J., Beers, M. C., Johnson, E., Nichols, D. G., Perl, T. M., Dick, J. D., Veltri, M. A., Willoughby, R. E., Jr. (2002) Pilot study of antibiotic cycling in a pediatric intensive care unit. Crit Care Med 30, 1877–82.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Miriam Barlow
    • 1
  1. 1.University of CaliforniaMerced, MercedUSA

Personalised recommendations