Defining the Mobilome

  • Janet L. Siefert
Part of the Methods in Molecular Biology book series (MIMB, volume 532)


This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.

Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.


Mobilome mobile genetic elements (MGEs) transposable elements (TEs) transposons plasmids bacteriophage Group II introns jumping genes insertion sequences (ISs) 


  1. 1.
    McClintock, B. (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36, 344–355.CrossRefPubMedGoogle Scholar
  2. 2.
    Pace, N. R. (2006) Time for a change. Nature 441, 289.CrossRefPubMedGoogle Scholar
  3. 3.
    Guttman, D. S., Dykhuizen, D. E. (1994) Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380–1383.CrossRefPubMedGoogle Scholar
  4. 4.
    Collier, L. S., Largaespada, D. A. (2007) Transposable elements and the dynamic somatic genome. Genome Biol 8 Suppl 1, S5.CrossRefPubMedGoogle Scholar
  5. 5.
    SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima,Y., Bennetzen, J. L. (1998) The paleontology of intergene retrotransposons of maize. Nat Genet, 20, 43–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Li, W., Zhang, P., Fellers, J. P., Friebe, B., Gill, B. S. (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J, 40, 500–511.CrossRefPubMedGoogle Scholar
  7. 7.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefPubMedGoogle Scholar
  8. 8.
    King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., Kell, D. B., Oliver, S. G. (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252.CrossRefPubMedGoogle Scholar
  9. 9.
    Copeland, C. S., Mann, V. H., Morales, M. E., Kalinna, B. H., Brindley, P. J. (2005) The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol Biol 5, 20.CrossRefPubMedGoogle Scholar
  10. 10.
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O. et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8, 973–982.CrossRefPubMedGoogle Scholar
  11. 11.
    Weiner, A. M. (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14, 343–350.CrossRefPubMedGoogle Scholar
  12. 12.
    Ray, D. A., Walker, J. A., Batzer, M. A. (2007) Mobile element-based forensic genomics. Mutat Res 616, 24–33.PubMedGoogle Scholar
  13. 13.
    Hasler, J., Strub, K. (2006) Alu elements as regulators of gene expression. Nucleic Acids Res 34, 5491–5497.CrossRefPubMedGoogle Scholar
  14. 14.
    Colmegna, I., Garry, R. F. (2006) Role of endogenous retroviruses in autoimmune diseases. Infect Dis Clin North Am 20, 913–929.CrossRefPubMedGoogle Scholar
  15. 15.
    Miller, W. J., Hagemann, S., Reiter, E., Pinsker, W. (1992) P-element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc Natl Acad Sci U S A 89, 4018–4022.CrossRefGoogle Scholar
  16. 16.
    van Gent, D. C., Mizuuchi, K., Gellert, M. (1996) Similarities between initiation of V(D)J recombination and retroviral integration. Science 271, 1592–1594.CrossRefPubMedGoogle Scholar
  17. 17.
    Kapitonov, V. V., Jurka, J. (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3, e181.CrossRefPubMedGoogle Scholar
  18. 18.
    Orgel, L. E., Crick, F. H. (1980) Selfish DNA: the ultimate parasite. Nature 284, 604–607.CrossRefPubMedGoogle Scholar
  19. 19.
    Bessereau, J. L. (2006) Transposons in C. elegans. WormBook 1–13.Google Scholar
  20. 20.
    Jacobson, J. W., Medhora, M. M., Hartl, D. L. (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A 83, 8684–8688.CrossRefPubMedGoogle Scholar
  21. 21.
    Plasterk, R. H. (1991) The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J 10, 1919–1925.Google Scholar
  22. 22.
    Ivics, Z., Izsvak, Z. (2006) Transposons for gene therapy! Curr Gene Ther 6, 593–607.CrossRefPubMedGoogle Scholar
  23. 23.
    Siguier, P., Filee, J., Chandler, M. (2006) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9, 526–531.CrossRefPubMedGoogle Scholar
  24. 24.
    Chandler, M., Mahillon, J. (2002) Insertion sequences revisited. In Mobile DNA vol II. (Craig, N. L., Craigie, R., Gellernt, M., Lambowitz, A. M., eds.), ASM Press, Washington D.C., pp. 305–366.Google Scholar
  25. 25.
    Filee, J., Siguier, P., Chandler, M. (2007) Insertion sequence diversity in archaea. Microbiol Mol Biol Rev 71, 121–157.CrossRefPubMedGoogle Scholar
  26. 26.
    Wagner, A. (2006) Cooperation is fleeting in the world of transposable elements. PLoS Comput Biol 2, e162.CrossRefPubMedGoogle Scholar
  27. 27.
    Lederberg, J. (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32, 403–430.PubMedGoogle Scholar
  28. 28.
    Velmurugan, S., Mehta, S., Uzri, D., Jayaram, M. (2003) Stable propagation of ‘selfish’ genetic elements. J Biosci 28, 623–636.CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas, C. M., Nielsen, K. M. (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3, 711–721.CrossRefPubMedGoogle Scholar
  30. 30.
    Saito, K., Yamazaki, M., Murakoshi, I. (1992) Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. J Nat Prod 55, 149–162.CrossRefPubMedGoogle Scholar
  31. 31.
    Martinez-Cuesta, M. C., Requena, T., Pelaez, C. (2001) Use of a bacteriocin-producing transconjugant as starter in acceleration of cheese ripening. Int J Food Microbiol 70, 79–88.CrossRefPubMedGoogle Scholar
  32. 32.
    Udo, E. E., Jacob, L. E. (1998) Conjugative transfer of high-level mupirocin resistance and the mobilization of non-conjugative plasmids in Staphylococcus aureus. Microb Drug Resist 4, 185–193.CrossRefPubMedGoogle Scholar
  33. 33.
    Kunin, V., He, S., Warnecke, F., Peterson, S. B., Garcia, M. H., Haynes, M., Ivanova, N., Blackall, L. L., Breitbart, M., Rohwer, F., McMahon, K.D., Hugenholtz, P. (2008) A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res 18, 293–297.CrossRefPubMedGoogle Scholar
  34. 34.
    Canchaya, C., Fournous, G., Brussow, H. (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53, 9–18.CrossRefPubMedGoogle Scholar
  35. 35.
    Faruque, S. M., Nair, G. B. (2002) Molecular ecology of toxigenic Vibrio cholerae. Microbiol Immunol 46, 59–66.PubMedGoogle Scholar
  36. 36.
    Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meethong, N., Hammond, P. T., Chiang, Y. M., Belcher, A. M. (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888.CrossRefPubMedGoogle Scholar
  37. 37.
    Lang, A. S., Beatty, J. T. (2007) Importance of widespread gene transfer agent genes in [alpha]-proteobacteria. Trends Microbiol 15, 54–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Lambowitz, A. M., Zimmerly, S. (2004) Mobile group II introns. Annu Rev Genet 38, 1–35.CrossRefPubMedGoogle Scholar
  39. 39.
    Toor, N., Hausner, G., Zimmerly, S. (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7, 1142–1152.CrossRefPubMedGoogle Scholar
  40. 40.
    Belhocine, K., Plante, I., Cousineau, B. (2004) Conjugation mediates transfer of the Ll.LtrB group II intron between different bacterial species. Mol Microbiol 51, 1459–1469.CrossRefPubMedGoogle Scholar
  41. 41.
    Lambowitz, A. M., Belfort, M. (1993) Introns as Mobile Genetic Elements. Annu Rev Biochem 62, 587–622.CrossRefPubMedGoogle Scholar
  42. 42.
    Joyce, G. F. (2007) Forty years of in vitro evolution. Angew Chem Int Ed Engl 46, 6420–6436.CrossRefPubMedGoogle Scholar
  43. 43.
    Gogarten, J. P., Hilario, E. (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6, 94.CrossRefPubMedGoogle Scholar
  44. 44.
    Gogarten, J. P., Olendzenski, L., Hilario, E., Simon, C., Holsinger, K. E. (1996) Dating the cenancester of organisms. Science 274, 1750–1751.CrossRefPubMedGoogle Scholar
  45. 45.
    Ochman, H., Lawrence, J. G., Groisman, E. A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304.CrossRefPubMedGoogle Scholar
  46. 46.
    Frost, L.S., Leplae, R., Summers, A. O., Toussaint, A. (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Micro 3, 722–732.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Janet L. Siefert
    • 1
  1. 1.Department of StatisticsRice UniversityHoustonUSA

Personalised recommendations