DNA Replication pp 55-70

Part of the Methods in Molecular Biology book series (MIMB, volume 521) | Cite as

Checkpoint Regulation of DNA Replication

  • Erik Boye
  • Henriette C. Skjølberg
  • Beáta Grallert
Protocol

Summary

We discuss the mechanisms regulating entry into and progression through S phase in eukaryotic cells. Methods to study the G1/S transition are briefly reviewed and an overview of G1/S-checkpoints is given, with particular emphasis on fission yeast. Thereafter we discuss different aspects of the intra-S checkpoint and introduce the main molecular players and mechanisms.

Key words

Checkpoints S phase DNA replication Gel electrophoresis Chromatin binding G1 phase 

References

  1. 1.
    Sherr, C. J., and McCormick, F. (2002) The RB and p53 pathways in cancer, Cancer Cell 2, 103–112.PubMedCrossRefGoogle Scholar
  2. 2.
    Bartek, J., Bartkova, J., and Lukas, J. (2007) DNA damage signalling guards against activated oncogenes and tumour progression, Oncogene 26, 7773–7779.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartkova, J., Lukas, J., and Bartek, J. (1997) Aberrations of the G1- and G1/S-regulating genes in human cancer, Prog Cell Cycle Res 3, 211–220.PubMedCrossRefGoogle Scholar
  4. 4.
    Nilssen, E. A., Synnes, M., Kleckner, N., Grallert, B., and Boye, E. (2003) Intra-G1 arrest in response to UV irradiation in fission yeast, Proc Natl Acad Sci USA 100, 10758–10763.PubMedCrossRefGoogle Scholar
  5. 5.
    Tvegard, T., Soltani, H., Skjolberg, H. C., Krohn, M., Nilssen, E. A., Kearsey, S. E., Grallert, B., and Boye, E. (2007) A novel checkpoint mechanism regulating the G1/S transition, Genes Dev 21, 649–654.PubMedCrossRefGoogle Scholar
  6. 6.
    Kearsey, S. E., Montgomery, S., Labib, K., and Lindner, K. (2000) Chromatin binding of the fission yeast replication factor mcm4 occurs during anaphase and requires ORC and cdc18, EMBO J 19, 1681–1690.PubMedCrossRefGoogle Scholar
  7. 7.
    Aves, S. J., Durkacz, B. W., Carr, A., and Nurse, P. (1985) Cloning, sequencing and transcriptional control of the Schizosaccharomyces pombe cdc10 ‘start’ gene, EMBO J 4, 457–463.PubMedGoogle Scholar
  8. 8.
    Tanaka, K., Okazaki, K., Okazaki, N., Ueda, T., Sugiyama, A., Nojima, H., and Okayama, H. (1992) A new cdc gene required for S phase entry of Schizosaccharomyces pombe encodes a protein similar to the cdc10+ and SWI4 gene products, EMBO J 11, 4923–4932.PubMedGoogle Scholar
  9. 9.
    Tanaka, K., and Okayama, H. (2000) A Pcl-like Cyclin Activates the Res2p-Cdc10p Cell Cycle “Start” Transcriptional Factor Complex in Fission Yeast, Mol Biol Cell 11, 2845–2862.PubMedGoogle Scholar
  10. 10.
    Nilssen, E. A., Synnes, M., Tvegard, T., Vebo, H., Boye, E., and Grallert, B. (2004) Germinating fission yeast spores delay in G1 in response to UV irradiation, BMC Cell Biol 5, 40.PubMedCrossRefGoogle Scholar
  11. 11.
    Mochida, S., and Yanagida, M. (2006) Distinct modes of DNA damage response in S. pombe G0 and vegetative cells, Genes Cells 11, 13–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Carlson, C. R., Grallert, B., Stokke, T., and Boye, E. (1999) Regulation of the start of DNA replication in Schizosaccharomyces pombe, J Cell Sci 112, 939–946.PubMedGoogle Scholar
  13. 13.
    Bartek, J., and Lukas, J. (2001) Mammalian G1- and S-phase checkpoints in response to DNA damage, Curr Opin Cell Biol 13, 738–747.PubMedCrossRefGoogle Scholar
  14. 14.
    Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints, Annu Rev Genet 36, 617–656.PubMedCrossRefGoogle Scholar
  15. 15.
    Siede, W., Friedberg, A. S., and Friedberg, E. C. (1993) RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae, Proc Natl Acad Sci USA 90, 7985–7989.PubMedCrossRefGoogle Scholar
  16. 16.
    Siede, W., Friedberg, A. S., Dianova, I., and Friedberg, E. C. (1994) Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents, Genetics 138, 271–281.PubMedGoogle Scholar
  17. 17.
    Sidorova, J. M., and Breeden, L. L. (2003) Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae, Mol Cell Biol 23, 3405–3416.PubMedCrossRefGoogle Scholar
  18. 18.
    Gerald, J. N. F., Benjamin, J. M., and Kron, S. J. (2002) Robust G1 checkpoint arrest in budding yeast: Dependence on DNA damage signaling and repair, J Cell Sci 115, 1749–1757.PubMedGoogle Scholar
  19. 19.
    Menacho-Marquez, M., Perez-Valle, J., Arino, J., Gadea, J., and Murguia, J. R. (2007) Gcn2p regulates a G1/S cell cycle checkpoint in response to DNA damage, Cell Cycle 6, 2302–2305.PubMedCrossRefGoogle Scholar
  20. 20.
    Ghavidel, A., Kislinger, T., Pogoutse, O., Sopko, R., Jurisica, I., and Emili, A. (2007) Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint, Cell 131, 915–926.PubMedCrossRefGoogle Scholar
  21. 21.
    Bakkenist, C. J., and Kastan, M. B. (2004) Initiating cellular stress responses, Cell 118, 9–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Bakkenist, C. J., and Kastan, M. B. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation, Nature 421, 499–506.PubMedCrossRefGoogle Scholar
  23. 23.
    Falck, J., Coates, J., and Jackson, S. P. (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage, Nature 434, 605–611.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, J. H., and Paull, T. T. (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex, Science 304, 93–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee, J. H., and Paull, T. T. (2005) ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex, Science 308, 551–554.PubMedCrossRefGoogle Scholar
  26. 26.
    Cortez, D., Guntuku, S., Qin, J., and Elledge, S. J. (2001) ATR and ATRIP: Partners in checkpoint signaling, Science 294, 1713–1716.PubMedCrossRefGoogle Scholar
  27. 27.
    Edwards, R. J., Bentley, N. J., and Carr, A. M. (1999) A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins, Nat Cell Biol 1, 393–398.PubMedCrossRefGoogle Scholar
  28. 28.
    Paciotti, V., Clerici, M., Lucchini, G., and Longhese, M. P. (2000) The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast, Genes Dev 14, 2046–2059.PubMedGoogle Scholar
  29. 29.
    Rouse, J., and Jackson, S. P. (2000) LCD1: An essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae, EMBO J 19, 5801–5812.PubMedCrossRefGoogle Scholar
  30. 30.
    Wakayama, T., Kondo, T., Ando, S., Matsumoto, K., and Sugimoto, K. (2001) Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae, Mol Cell Biol 21, 755–764.PubMedCrossRefGoogle Scholar
  31. 31.
    Zou, L., and Elledge, S. J. (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes, Science 300, 1542.PubMedCrossRefGoogle Scholar
  32. 32.
    Wolkow, T. D., and Enoch, T. (2002) Fission yeast rad26 is a regulatory subunit of the rad3 checkpoint kinase, Mol Biol Cell 13, 480–492.PubMedCrossRefGoogle Scholar
  33. 33.
    Zou, L., Liu, D., and Elledge, S. J. (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes, Proc Natl Acad Sci 100, 13827–13832.PubMedCrossRefGoogle Scholar
  34. 34.
    Rothstein, R., Michel, B., and Gangloff, S. (2000) Replication fork pausing and recombination or “gimme a break”, Genes Dev 14, 1–10.PubMedGoogle Scholar
  35. 35.
    Caspari, T., Dahlen, M., Kanter-Smoler, G., Lindsay, H. D., Hofmann, K., Papadimitriou, K., Sunnerhagen, P., and Carr, A. M. (2000) Characterization of Schizosaccharomyces pombe Hus1: A PCNA-related protein that associates with Rad1 and Rad9, Mol Cell Biol 20, 1254–1262.PubMedCrossRefGoogle Scholar
  36. 36.
    Majka, J., and Burgers, P. M. J. (2003) Yeast Rad17/Mec3/Ddc1: A sliding clamp for the DNA damage checkpoint, Proc Natl Acad Sci 100, 2249–2254.PubMedCrossRefGoogle Scholar
  37. 37.
    Zou, L., Cortez, D., and Elledge, S. J. (2002) Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin, Genes Dev 16, 198–208.PubMedCrossRefGoogle Scholar
  38. 38.
    Lindsey-Boltz, L. A., Bermudez, V. P., Hurwitz, J., and Sancar, A. (2001) Purification and characterization of human DNA damage checkpoint Rad complexes, Proc Natl Acad Sci USA 98, 11236–11241.PubMedCrossRefGoogle Scholar
  39. 39.
    Green, C. M., Erdjument-Bromage, H., Tempst, P., and Lowndes, N. F. (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C, Curr Biol 10, 39–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Venclovas, C., and Thelen, M. P. (2000) Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes, Nucleic Acids Res 28, 2481–2493.PubMedCrossRefGoogle Scholar
  41. 41.
    Saka, Y., and Yanagida, M. (1993) Fission yeast cut5+, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4 + [see comments], Cell 74, 383–393.PubMedCrossRefGoogle Scholar
  42. 42.
    Saka, Y., Fantes, P., Sutani, T., McInerny, C., Creanor, J., and Yanagida, M. (1994) Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control, EMBO J 13, 5319–5329.PubMedGoogle Scholar
  43. 43.
    Araki, H., Leem, S. H., Phongdara, A., and Sugino, A. (1995) Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint, Proc Natl Acad Sci USA 92, 11791–11795.PubMedCrossRefGoogle Scholar
  44. 44.
    Furuya, K., Poitelea, M., Guo, L., Caspari, T., and Carr, A. M. (2004) Chk1 activation requires Rad9 S/TQ-site phosphorylation to promote association with C-terminal BRCT domains of Rad4TOPBP1, Genes Dev 18, 1154–1164.PubMedCrossRefGoogle Scholar
  45. 45.
    Kai, M., Furuya, K., Paderi, F., Carr, A. M., and Wang, T. S. (2007) Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice, Nat Cell Biol 9, 691–697.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumagai, A., Lee, J., Yoo, H. Y., and Dunphy, W. G. (2006) TopBP1 activates the ATR-ATRIP complex, Cell 124, 943–955.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee, J., Kumagai, A., and Dunphy, W. G. (2007) The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR, J Biol Chem 282, 28036–28044.PubMedCrossRefGoogle Scholar
  48. 48.
    Alcasabas, A. A., Osborn, A. J., Bachant, J., Hu, F., Werler, P. J., Bousset, K., Furuya, K., Diffley, J. F., Carr, A. M., and Elledge, S. J. (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53, Nat Cell Biol 3, 958–965.PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka, K., and Russell, P. (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1, Nat Cell Biol 3, 966–972.PubMedCrossRefGoogle Scholar
  50. 50.
    Katou, Y., Kanoh, Y., Bando, M., Noguchi, H., Tanaka, H., Ashikari, T., Sugimoto, K., and Shirahige, K. (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex, Nature 424, 1078–1083.PubMedCrossRefGoogle Scholar
  51. 51.
    Osborn, A. J., and Elledge, S. J. (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53, Genes Dev 17, 1755.PubMedCrossRefGoogle Scholar
  52. 52.
    Chini, C. C. S., and Chen, J. (2004) Claspin, a regulator of Chk1 in DNA replication stress pathway, DNA Repair 3, 1033–1037.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin, S.-Y., Li, K., Stewart, G. S., and Elledge, S. J. (2004) Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation, Proc Natl Acad Sci 101, 6484–6489.PubMedCrossRefGoogle Scholar
  54. 54.
    Yoo, H. Y., Jeong, S. Y., and Dunphy, W. G. (2006) Site-specific phosphorylation of a checkpoint mediator protein controls its responses to different DNA structures, Genes Dev 20, 772–783.PubMedCrossRefGoogle Scholar
  55. 55.
    Bartek, J., Lukas, C., and Lukas, J. (2004) Checking on DNA damage in S phase, Nat Rev Mol Cell Biol 5, 792–804.PubMedCrossRefGoogle Scholar
  56. 56.
    Donzelli, M., and Draetta, G. F. (2003) Regulating mammalian checkpoints through Cdc25 inactivation, EMBO Rep 4, 671–677.PubMedCrossRefGoogle Scholar
  57. 57.
    Brown, G. W., and Kelly, T. J. (1999) Cell cycle regulation of Dfp1, an activator of the Hsk1 protein kinase, Proc Natl Acad Sci 96, 8443–8448.PubMedCrossRefGoogle Scholar
  58. 58.
    Weinreich, M., and Stillman, B. (1999) Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway, EMBO J 18, 5334–5346.PubMedCrossRefGoogle Scholar
  59. 59.
    Snaith, H. A., Brown, G. W., and Forsburg, S. L. (2000) Schizosaccharomyces pombe hsk1p is a potential cds1p target required for genome integrity, Mol Cell Biol 20, 7922–7932.PubMedCrossRefGoogle Scholar
  60. 60.
    Jares, P., Donaldson, A., and Blow, J. J. (2000) The Cdc7/Dbf4 protein kinase: Target of the S phase checkpoint? EMBO Rep 1, 319–322.PubMedCrossRefGoogle Scholar
  61. 61.
    Takeda, T., Ogino, K., Tatebayashi, K., Ikeda, H., Arai, K., and Masai, H. (2001) Regulation of initiation of s phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during s phase by hsk1 kinase in the fission yeast, Mol Biol Cell 12, 1257–1274.PubMedGoogle Scholar
  62. 62.
    Duncker, B. P., Shimada, K., Tsai-Pflugfelder, M., Pasero, P., and Gasser, S. M. (2002) An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing, Proc Natl Acad Sci 99, 16087–16092.PubMedCrossRefGoogle Scholar
  63. 63.
    Costanzo, V., Shechter, D., Lupardus, P. J., Cimprich, K. A., Gottesman, M., and Gautier, J. (2003) An ATR- and Cdc7-Dependent DNA damage checkpoint that inhibits initiation of DNA replication, Mol Cell 11, 203–213.PubMedCrossRefGoogle Scholar
  64. 64.
    Heffernan, T. P., Unsal-Kacmaz, K., Heinloth, A. N., Simpson, D. A., Paules, R. S., Sancar, A., Cordeiro-Stone, M., and Kaufmann, W. K. (2007) Cdc7-Dbf4 and the human S checkpoint response to UVC, J Biol Chem 282, 9458–9468.PubMedCrossRefGoogle Scholar
  65. 65.
    Cortez, D., Glick, G., and Elledge, S. J. (2004) From The Cover: Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases, Proc Natl Acad Sci 101, 10078–10083.PubMedCrossRefGoogle Scholar
  66. 66.
    Ishimi, Y., Komamura-Kohno, Y., Kwon, H.-J., Yamada, K., and Nakanishi, M. (2003) Identification of MCM4 as a Target of the DNA replication block checkpoint system, J Biol Chem 278, 24644–24650.PubMedCrossRefGoogle Scholar
  67. 67.
    Bailis, J. M., Luche, D. D., Hunter, T., and Forsburg, S. L. (2008) MCM proteins interact with checkpoint and recombination proteins to promote S phase genome stability, Mol Cell Biol 28, 1724–1738.PubMedCrossRefGoogle Scholar
  68. 68.
    West, S. C. (2003) Molecular views of recombination proteins and their control, Nat Rev Mol Cell Biol 4, 435–445.PubMedCrossRefGoogle Scholar
  69. 69.
    Kai, M., Boddy, M. N., Russell, P., and Wang, T. S. (2005) Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress, Genes Dev 19, 919–932.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen, X.-B., Melchionna, R., Denis, C.-M., Gaillard, P.-H. L., Blasina, A., Van de Weyer, I., Boddy, M. N., Russell, P., Vialard, J., and McGowan, C. H. (2001) Human Mus81-associated endonuclease cleaves holliday junctions In vitro, Mol Cell 8, 1117–1127.PubMedCrossRefGoogle Scholar
  71. 71.
    Lambert, S., and Carr, A. M. (2005) Checkpoint responses to replication fork barriers, Biochimie 87, 591–602.PubMedCrossRefGoogle Scholar
  72. 72.
    Lambert, S., Froget, B., and Carr, A. M. (2007) Arrested replication fork processing: Interplay between checkpoints and recombination, DNA Repair (Amst) 6, 1042–1061.CrossRefGoogle Scholar
  73. 73.
    Sommariva, E., Pellny, T. K., Karahan, N., Kumar, S., Huberman, J. A., and Dalgaard, J. Z. (2005) Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel S-phase response pathway to alkylation damage, Mol Cell Biol 25, 2770–2784.PubMedCrossRefGoogle Scholar
  74. 74.
    Noguchi, E., Noguchi, C., McDonald, W. H., Yates, J. R., III, and Russell, P. (2004) Swi1 and Swi3 are components of a replication fork protection complex in fission yeast, Mol Cell Biol 24, 8342–8355.PubMedCrossRefGoogle Scholar
  75. 75.
    Nedelcheva, M. N., Roguev, A., Dolapchiev, L. B., Shevchenko, A., Taskov, H. B., Shevchenko, A., Stewart, A. F., and Stoynov, S. S. (2005) Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex, J Mol Biol 347, 509–521.PubMedCrossRefGoogle Scholar
  76. 76.
    Gambus, A., Jones, R. C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R. D., and Labib, K. (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks, Nat Cell Biol 8, 358–366.PubMedCrossRefGoogle Scholar
  77. 77.
    Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A., and Labib, K. (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork, Genes Dev 19, 1905–1919.PubMedCrossRefGoogle Scholar
  78. 78.
    Gotter, A. L., Suppa, C., and Emanuel, B. S. (2007) Mammalian TIMELESS and tipin are evolutionarily conserved replication fork-associated factors, J Mol Biol 366, 36–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Santocanale, C., and Diffley, J. F. (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication, Nature 395, 615–618.PubMedCrossRefGoogle Scholar
  80. 80.
    Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J., and Lukas, J. (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis, Nature 410, 842–847.PubMedCrossRefGoogle Scholar
  81. 81.
    Falck, J., Petrini, J. H., Williams, B. R., Lukas, J., and Bartek, J. (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways, Nat Genet 30, 290–294.PubMedCrossRefGoogle Scholar
  82. 82.
    Tercero, J. A., Longhese, M. P., and Diffley, J. F. (2003) A central role for DNA replication forks in checkpoint activation and response, Mol Cell 11, 1323–1336.PubMedCrossRefGoogle Scholar
  83. 83.
    Tercero, J. A., and Diffley, J. F. (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint, Nature 412, 553–557.PubMedCrossRefGoogle Scholar
  84. 84.
    Merrick, C. J., Jackson, D., and Diffley, J. F. X. (2004) Visualization of altered replication dynamics after DNA damage in human cells, J Biol Chem 279, 20067–20075.PubMedCrossRefGoogle Scholar
  85. 85.
    Conti, C., Seiler, J. A., and Pommier, Y. (2007) The mammalian DNA replication elongation checkpoint: Implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses, Cell Cycle 6, 2760–2767.PubMedCrossRefGoogle Scholar
  86. 86.
    Unsal-Kacmaz, K., Chastain, P. D., Qu, P. P., Minoo, P., Cordeiro-Stone, M., Sancar, A., and Kaufmann, W. K. (2007) The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement, Mol Cell Biol 27, 3131–3142.PubMedCrossRefGoogle Scholar
  87. 87.
    Seiler, J. A., Conti, C., Syed, A., Aladjem, M. I., and Pommier, Y. (2007) The Intra-S-Phase checkpoint affects both DNA replication initiation and elongation: Single-Cell and -DNA fiber analyses, Mol Cell Biol 27, 5806–5818.PubMedCrossRefGoogle Scholar
  88. 88.
    Heichinger, C., Penkett, C. J., Bahler, J., and Nurse, P. (2006) Genome-wide characterization of fission yeast DNA replication origins, EMBO J 25, 5171–5179.PubMedCrossRefGoogle Scholar
  89. 89.
    Hayashi, M., Katou, Y., Itoh, T., Tazumi, A., Yamada, Y., Takahashi, T., Nakagawa, T., Shirahige, K., and Masukata, H. (2007) Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast, EMBO J 26, 1327–1339.PubMedCrossRefGoogle Scholar
  90. 90.
    Mickle, K. L., Ramanathan, S., Rosebrock, A., Oliva, A., Chaudari, A., Yompakdee, C., Scott, D., Leatherwood, J., and Huberman, J. A. (2007) Checkpoint independence of most DNA replication origins in fission yeast, BMC Mol Biol 8, 112.PubMedCrossRefGoogle Scholar
  91. 91.
    Kim, S. M., and Huberman, J. A. (2001) Regulation of replication timing in fission yeast, EMBO J 20, 6115–6126.PubMedCrossRefGoogle Scholar
  92. 92.
    Meister, P., Taddei, A., Ponti, A., Baldacci, G., and Gasser, S. M. (2007) Replication foci dynamics: Replication patterns are modulated by S-phase checkpoint kinases in fission yeast, EMBO J 26, 1315–1326.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Erik Boye
    • 1
  • Henriette C. Skjølberg
  • Beáta Grallert
  1. 1.Department of Cell Biology, Institute for Cancer ResearchRikshospitalet-Radiumhospitalet Medical CentreMontebelloNorway

Personalised recommendations