DNA Replication pp 575-603

Part of the Methods in Molecular Biology book series (MIMB, volume 521)

Use of DNA Combing to Study DNA Replicationin Xenopus and Human Cell-Free Systems

  • Kathrin Marheineke
  • Arach Goldar
  • Torsten Krude
  • Olivier Hyrien


The Xenopus egg extract has become the gold standard for in vitro studies of metazoan DNA replication. We have used this system to study the mechanisms that ensure rapid and complete DNA replication despite random initiation during Xenopus early development. To this end we adapted the DNA combing technique to investigate the distribution of replication bubbles along single DNA molecules. DNA replicating in egg extracts is labelled by addition of digoxigenin-11-dUTP and/or biotin-16-dUTP at precise times. These two dTTP analogues are efficiently incorporated into DNA during replication in the extract. After DNA purification and combing the DNA is visualized with appropriate fluorescent antibody/streptavidin molecules. Replicated DNA appears as green or red tracts whose pattern reveals how each molecule was replicated, allowing to follow the dynamics of DNA replication through S phase. We describe (a) the preparation and use of egg extracts and demembranated sperm chromatin templates; (b) a simple method for preparing silanized glass coverslips suitable for DNA combing and fluorescence detection; (c) two alternative replicative DNA labelling schemes and their respective advantages; and (d) a protocol for combining replicative labelling with detection of specific DNA sequences by fluorescent in situ hybridization (FISH).Although most observations made in Xenopus egg extracts are applicable to other eukaryotes, there are differences in cell-cycle regulation between mammalian somatic cells and embryonic amphibian cells, which led to the development of human cell-free systems that can initiate semi-conservative chromosomal DNA replication under cell-cycle control. We have employed the knowledge gained with Xenopus extracts to characterize DNA replication intermediates generated in human cell-free systems using DNA combing. We describe here (a) the preparation and use of human cell-free extracts and initiation-competent template nuclei for DNA combing studies; (b) an optimized labelling scheme for DNA replication intermediates by molecular combing and fluorescence microscopy.

Key words

Xenopus egg extracts Human cell-free replication system DNA combing Glass silanization Replication origins Replication bubbles Replication fork progression Random completion problem Spatio-temporal program of DNA replication. 


  1. 1.
    DePamphilis, M. L. (1997) DNA replication, Methods 13, 209–210PubMedCrossRefGoogle Scholar
  2. 2.
    Hyrien, O., Marheineke, K., and Goldar, A. (2003) Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem, BioEssays 25, 116–125PubMedCrossRefGoogle Scholar
  3. 3.
    Hyrien, O., Maric, C., and M×échali, M. (1995) Transition in specification of embryonic metazoan DNA replication origins, Science 270, 994–997PubMedCrossRefGoogle Scholar
  4. 4.
    Hyrien, O., and M×échali, M. (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos, EMBO J 12, 4511–4520PubMedGoogle Scholar
  5. 5.
    Hyrien, O., and M×échali, M. (1992) Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis, Nucleic Acids Res 20, 1463–1469PubMedCrossRefGoogle Scholar
  6. 6.
    Mahbubani, H. M., Paull, T., Elder, J. K., and Blow, J. J. (1992) DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts, Nucleic Acids Res 20, 1457–1462PubMedCrossRefGoogle Scholar
  7. 7.
    Blumenthal, A. B., Kriegstein, H. J., and Hogness, D. S. (1974) The units of DNA replication in Drosophila melanogaster chromosomes, Cold Spring Harb Symp Quant Biol 38, 205–223PubMedCrossRefGoogle Scholar
  8. 8.
    Lucas, I., Chevrier-Miller, M., Sogo, J. M., and Hyrien, O. (2000) Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos, J Mol Biol 296, 769–786PubMedCrossRefGoogle Scholar
  9. 9.
    Huberman, J. A., and Riggs, A. D. (1968) On the mechanism of DNA replication in mammalian chromosomes, J Mol Biol 32, 327–341PubMedCrossRefGoogle Scholar
  10. 10.
    Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., and Bensimon, D. (1994) Alignment and sensitive detection of DNA by a moving interface, Science 265, 2096–2098PubMedCrossRefGoogle Scholar
  11. 11.
    Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., van Slegtenhorst, M., Wolfe, J., Povey, S., Beckmann, J. S., and Bensimon, A. (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies, Science 277, 1518–1523PubMedCrossRefGoogle Scholar
  12. 12.
    Herrick, J., Stanislawski, P., Hyrien, O., and Bensimon, A. (2000) Replication fork density increases during DNA synthesis in X. laevis egg extracts, J Mol Biol 300, 1133–1142PubMedCrossRefGoogle Scholar
  13. 13.
    Marheineke, K., and Hyrien, O. (2001) Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts, J Biol Chem 276, 17092–17100PubMedCrossRefGoogle Scholar
  14. 14.
    Marheineke, K., and Hyrien, O. (2004) Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint, J Biol Chem 279, 28071–28081. PubMedCrossRefGoogle Scholar
  15. 15.
    Marheineke, K., Hyrien, O., and Krude, T. (2005) Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system, Nucleic Acids Res 33, 6931–6941PubMedCrossRefGoogle Scholar
  16. 16.
    Krude, T. (2006) Initiation of chromosomal DNA replication in mammalian cell-free systems, Cell Cycle 5, 2115–2122PubMedCrossRefGoogle Scholar
  17. 17.
    . Krude, T., Christov, C., Hyrien, O., and Marheineke, K. (2008) Y RNA Functions at the initiation step of mammalian chromosomal DNA replication, submitted Google Scholar
  18. 18.
    Lengronne, A., Pasero, P., Bensimon, A., and Schwob, E. (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains, Nucleic Acids Res 29, 1433–1442PubMedCrossRefGoogle Scholar
  19. 19.
    Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y., and Mechali, M. (2005) Mitotic remodeling of the replicon and chromosome structure, Cell 123, 787–801PubMedCrossRefGoogle Scholar
  20. 20.
    Pillaire, M. J., Betous, R., Conti, C., Czaplicki, J., Pasero, P., Bensimon, A., Cazaux, C., and Hoffmann, J. S. (2007) Upregulation of error-prone DNA polymerases beta and kappa slows down fork progression without activating the replication checkpoint, Cell Cycle 6, 471–477PubMedCrossRefGoogle Scholar
  21. 21.
    Conti, C., Sacca, B., Herrick, J., Lalou, C., Pommier, Y., and Bensimon, A. (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells, Mol Biol Cell 18, 3059–3067PubMedCrossRefGoogle Scholar
  22. 22.
    Pasero, P., Bensimon, A., and Schwob, E. (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus, Genes Dev 16, 2479–2484PubMedCrossRefGoogle Scholar
  23. 23.
    Anglana, M., Apiou, F., Bensimon, A., and Debatisse, M. (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing, Cell 114, 385–394PubMedCrossRefGoogle Scholar
  24. 24.
    Lebofsky, R., and Bensimon, A. (2005) DNA replication origin plasticity and perturbed fork progression in human inverted repeats, Mol Cell Biol 25, 6789–6797PubMedCrossRefGoogle Scholar
  25. 25.
    . Lebofsky, R., Heilig, R., Sonnleitner, M., Weissenbach, J., and Bensimon, A. (2006) DNA replication origin interference increases the spacing between initiation events in human cells, Mol Biol Cell 17, 5337–5345Google Scholar
  26. 26.
    Allemand, J. F., Bensimon, D., Jullien, L., Bensimon, A., and Croquette, V. (1997) pH-dependent specific binding and combing of DNA, Biophys J 73, 2064–2070PubMedCrossRefGoogle Scholar
  27. 27.
    .Labit, H., Goldar, A., Guilbaud, G., Douarche, C., Hyrien, O., and Marheineke, K. (2008) An optimized easy method for preparing silanized surfaces for FISH and replication mapping on combed DNA fibers, Biotechniques, in pressGoogle Scholar
  28. 28.
    Gurdon, J. B. (1976) Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal, J Embryol Exp Morphol 36, 523–540PubMedGoogle Scholar
  29. 29.
    Murray, A. W. (1991) Cell cycle extracts, Methods Cell Biol 36, 581–605PubMedCrossRefGoogle Scholar
  30. 30.
    Blow, J. J., and Laskey, R. A. (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs, Cell 47, 577–587PubMedCrossRefGoogle Scholar
  31. 31.
    Szuts, D., and Krude, T. (2004) Cell cycle arrest at the initiation step of human chromosomal DNA replication causes DNA damage, J Cell Sci 117, 4897–4908PubMedCrossRefGoogle Scholar
  32. 32.
    Krude, T. (1999) Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner, Exp Cell Res 247, 148–159PubMedCrossRefGoogle Scholar
  33. 33.
    Krude, T., Jackman, M., Pines, J., and Laskey, R. A. (1997) Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system, Cell 88, 109–119PubMedCrossRefGoogle Scholar
  34. 34.
    Li, J. J., and Kelly, T. J. (1984) Simian virus 40 DNA replication in vitro, Proc Natl Acad Sci U S A 81, 6973–6977PubMedCrossRefGoogle Scholar
  35. 35.
    Krude, T. (2000) Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state, J Biol Chem 275, 13699–13707PubMedCrossRefGoogle Scholar
  36. 36.
    Keller, C., Hyrien, O., Knippers, R., and Krude, T.(2002) Site-specific and temporally controlled initiation of DNA replication in a human cell-free system, Nucleic Acids Res. 30, 2114–2123PubMedCrossRefGoogle Scholar
  37. 37.
    Brzoska, J., Shahidzadeh, N., and Rondelez, F. (1992) Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings, Nature 360, 719–721CrossRefGoogle Scholar
  38. 38.
    Dong, J., Wang, A., Simon Ng, K., and Mao, G.(2006) Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapour deposition, Thin Solid Films 515, 2116–2122CrossRefGoogle Scholar
  39. 39.
    Stoeber, K., Mills, A. D., Kubota, Y., Krude, T., Romanowski, P., Marheineke, K., Laskey, R. A., and Williams, G. H. (1998) Cdc6 protein causes premature entry into S phase in a mammalian cell- free system, EMBO J 17, 7219–7229PubMedCrossRefGoogle Scholar
  40. 40.
    Angst, D., and Simmons, G. (1991) Moisture absorption characteristics of organosiloxane self-assembled monolayers, Langmuir 7, 2236–2242CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kathrin Marheineke
    • 1
  • Arach Goldar
    • 1
  • Torsten Krude
    • 1
  • Olivier Hyrien
    • 1
  1. 1.Genetique MoleculaireEcole Normale Sup©rieureFrance

Personalised recommendations