Microscopy Techniques to Examine DNA Replication in Fission Yeast

  • Marc D. Green
  • Sarah A. Sabatinos
  • Susan L. Forsburg
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 521)

Summary

Temporal and spatial visualization of replication proteins and associated structures within the narrow confines of a yeast nucleus is technically challenging. Choosing the appropriate method depends upon the parameters of the experiment, the nature of the molecules to be observed, and the hypothesis to be tested. In this chapter, we review three broad types of visualization: whole cell fluorescence or immunofluorescence, which is useful for questions of timing and chromatin association; nuclear spreads, which provide greater resolution within the chromatin for colocalization and region-specific effects; and chromatin fibers, which allow observation of labeled proteins and newly synthesized DNA on a linear chromosome. We discuss applications of these protocols and some considerations for choosing methods and fluorophores.

Key words:

Microscopy Immunofluorescence DNA fiber Chromatin spreads Whole cell immunofluorescence Fission yeast 

References

  1. 1.
    Inoué, S. (2006) Foundations of confocal scanned imaging in light microscopy,in Handbook of Biological Confocal Microscopy 3rd ed.< (Pawley, J. , Ed.), pp. 1–19, Plenum, NY.CrossRefGoogle Scholar
  2. 2.
    Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H.F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Klar, T.A., Jakobs, S., Dyba, M., Egner, A., and Hell, S.W. (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97, 8206–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Bailis, J.M., Luche, D.D., Hunter, T., and Forsburg, S.L. (2008) MCM proteins interact with checkpoint and recombination proteins to promote S phase genome stability. Mol Cell Biol 28, 1724–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Dresser, M.E., and Giroux, C.N. (1988) Meiotic chromosome behavior in spread preparations of yeast. J Cell Biol 106, 567–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Ogawa, Y., Takahashi, T., and Masukata, H. (1999) Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins. Mol Cell Biol 19, 7228–36.PubMedGoogle Scholar
  7. 7.
    Blower, M.D., Sullivan, B.A., and Karpen, G.H. (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2, 319–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenberg, C., Florijn, R.J., Van de Rijke, F.M., Blonden, L.A., Raap, T.K., Van Ommen, G.J., and Den Dunnen, J.T. (1995) High resolution DNA fiber-fish on yeast artificial chromosomes: direct visualization of DNA replication. Nat Genet 10, 477–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Sullivan, B.A., and Karpen, G.H. (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11, 1076–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Demeter, J., Morphew, M., and Sazer, S. (1995) A mutation in the RCC1-related protein pim1 results in nuclear envelope fragmentation in fission yeast. Proc Natl Acad Sci U S A 92, 1436–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Gómez, E.B., Catlett, M.G., and Forsburg, S.L. (2002) Different phenotypes in vivo are associated with ATPase motif mutations in Schizosaccharomyces pombe minichromosome maintenance proteins. Genetics 160, 1305–18.PubMedGoogle Scholar
  12. 12.
    Hodson, J.A., Bailis, J.M., and Forsburg, S.L. (2003) Efficient labeling of fission yeast Schizosaccharomyces pombe with thymidine and BUdR. Nucleic Acids Res 31, e134.PubMedCrossRefGoogle Scholar
  13. 13.
    Neff, M.W., and Burke, D.J. (1991) Random segregation of chromatids at mitosis in Saccharomyces cerevisiae. Genetics 127, 463–73.PubMedGoogle Scholar
  14. 14.
    Forsburg, S.L., Sherman, D.A., Ottilie, S., Yasuda, J.R., and Hodson, J.A. (1997) Mutational analysis of Cdc19p, a Schizosaccharomyces pombe MCM protein. Genetics 147, 1025–41.PubMedGoogle Scholar
  15. 15.
    Sivakumar, S., Porter-Goff, M., Patel, P.K., Benoit, K., and Rhind, N. (2004) In vivo labeling of fission yeast DNA with thymidine and thymidine analogs. Methods 33, 213–9.PubMedCrossRefGoogle Scholar
  16. 16.
    North, A.J. (2006) Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. J Cell Biol 172, 9–18.PubMedCrossRefGoogle Scholar
  17. 17.
    McNamara, G., Gupta, A., Reynaert, J., Coates, T.D., and Boswell, C. (2006) Spectral imaging microscopy web sites and data. Cytometry A 69, 863–71.PubMedGoogle Scholar
  18. 18.
    Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W. (1989) Fluorescence microscopy in three dimensions. Methods Cell Biol 30, 353–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Agard, D.A., and Sedat, J.W. (1983) Three-dimensional architecture of a polytene nucleus. Nature 302, 676–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Cannell, M., McMorland, A., and Soeller, C. (2006) Image enhancement by deconvolution, in Handbook of Biological Confocal Microscopy 3rd ed. (Pawley, J., ), pp. 488–500, Plenum, NY.CrossRefGoogle Scholar
  21. 21.
    Shaw, P. (2006) Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging, in Handbook of Biological Confocal Microscopy 3rd ed. (Pawley, J., ), pp. 452–67, Plenum, NY.Google Scholar
  22. 22.
    Pawley, J. (2006) Points, pixels and gray levels: Digitizing image Data, in Handbook of Biological Confocal Microscopy 3rd ed. (Pawley, J., ), pp. 59–79, Plenum, NY.CrossRefGoogle Scholar
  23. 23.
    Kearsey, S.E., Montgomery, S., Labib, K., and Lindner, K. (2000) Chromatin binding of the fission yeast replication factor mcm4 occurs during anaphase and requires ORC and cdc18. Embo J 19, 1681–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Alfa, C.E., Gallagher, I.M., and Hyams, J.S. (1993) Antigen localization in fission yeast. Methods Cell Biol 37, 201–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Forsburg, S.L., and Rhind, N. (2006) Basic methods for fission yeast. Yeast 23, 173–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Bailis, J.M., and Roeder, G.S. (1998) Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev 12, 3551–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen. Wahrnehmung. Arch. mikrosk. Anat. Entwichlungsmech. 9, 413–68.CrossRefGoogle Scholar
  28. 28.
    Dolan, W.P., Sherman, D.A., and Forsburg, S.L. (2004) Schizosaccharomyces pombe replication protein Cdc45/Sna41 requires Hsk1/Cdc7 and Rad4/Cut5 for chromatin binding. Chromosoma 113, 145–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Yokochi, T., and Gilbert, D.M. (2007) Replication labeling with halogenated thymidine analogs. Curr Protoc Cell Biol Chapter 22, Unit 22 10.Google Scholar
  30. 30.
    Paluh, J.L., Nogales, E., Oakley, B.R., McDonald, K., Pidoux, A.L., and Cande, W.Z. (2000) A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol Biol Cell 11, 1225–39.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marc D. Green
    • 1
  • Sarah A. Sabatinos
    • 1
  • Susan L. Forsburg
    • 1
  1. 1.Department of Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations