Detection of Replication Origins Using Comparative Genomics and Recombinational ARS Assay

Part of the Methods in Molecular Biology book series (MIMB, volume 521)


Effective experimental techniques are available to identify replication origin regions in eukaryotic cells. Genome-wide identification of the precise sequence elements that direct origin activity is however still not straightforward, even in the yeast Saccharomyces cerevisiae which has the best characterised eukaryotic replication origins. The availability of genome sequences for a series of closely related (sensu stricto) budding yeasts has allowed us to take a ‘comparative genomics’ approach to this problem. Since they represent functional protein-binding sites, origin sequences are conserved better than the surrounding intergenic sequence within the genomes of closely related yeasts. We describe here how phylogenetic comparison data can be used to identify candidate replication origin sequences in the S. cerevisiae genome, and how large numbers of such candidate sites can simultaneously be assayed for ability to initiate replication. Similar approaches could potentially be used to identify protein-binding sequence elements having other functions, as well as replication origin sites in other species.

Key words:

Yeast Phylogenetic Genomic S. cerevisiae Replication Origin ARS 


CAN is a BBSRC David Phillips Research Fellow. This work was supported by MRC Grant 78662 to ADD.


  1. 1.
    MacAlpine, D. M., and Bell, S. P. (2005) A genomic view of eukaryotic DNA replication. Chromosome Res 13, 309–326PubMedCrossRefGoogle Scholar
  2. 2.
    Raghuraman, M. K., Winzeler, E. A., Collingwood, D., Hunt, S., Wodicka, L., Conway, A., Lockhart, D. J., Davis, R. W., Brewer, B. J., and Fangman, W. L. (2001) Replication dynamics of the yeast genome. Science 294, 115–121PubMedCrossRefGoogle Scholar
  3. 3.
    Wyrick, J. J., Aparicio, J. G., Chen, T., Barnett, J. D., Jennings, E. G., Young, R. A., Bell, S. P., and Aparicio, O. M. (2001) Genome-wide distribution of ORC and MCM proteins in 
S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357–2360PubMedCrossRefGoogle Scholar
  4. 4.
    Yabuki, N., Terashima, H., and Kitada, K. (2002) Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781–789PubMedCrossRefGoogle Scholar
  5. 5.
    Nieduszynski, C. A., Hiraga, S., Ak, P., Benham, C. J., and Donaldson, A. D. (2007) OriDB: a DNA replication origin database. Nucleic Acids Res 35, D40–46PubMedCrossRefGoogle Scholar
  6. 6.
    Stinchcomb, D. T., Struhl, K., and Davis, 
R. W. (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282, 39–43PubMedCrossRefGoogle Scholar
  7. 7.
    Van Houten, J. V., and Newlon, C. S. (1990) Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 10, 3917–3925PubMedGoogle Scholar
  8. 8.
    Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L., Fulton, B., Majors, J., Waterston, R., Cohen, B. A., and Johnston, M. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76PubMedCrossRefGoogle Scholar
  9. 9.
    Kellis, M., Patterson, N., Endrizzi, M., 
Birren, B., and Lander, E. S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254PubMedCrossRefGoogle Scholar
  10. 10.
    Nieduszynski, C. A., Knox, Y., and Donaldson, 
A. D. (2006) Genome-wide identification of replication origins in yeast by comparative genomics. Genes and Development 20, 1874–1879PubMedCrossRefGoogle Scholar
  11. 11.
    Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W., Hannett, N. M., Tagne, J. B., Reynolds, D. B., Yoo, J., Jennings, E. G., Zeitlinger, J., Pokholok, D. K., Kellis, M., Rolfe, P. A., Takusagawa, K. T., Lander, E. S., Gifford, D. K., Fraenkel, E., and Young, R. A. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104PubMedCrossRefGoogle Scholar
  12. 12.
    Calvi, B. R., Byrnes, B. A., and Kolpakas, A. J. 
(2007) Conservation of epigenetic regulation, ORC binding and developmental timing of DNA replication origins in the genus Drosophila. Genetics 177, 1291–1301PubMedCrossRefGoogle Scholar
  13. 13.
    Karolchik, D., Kuhn, R. M., Baertsch, R., 
Barber, G. P., Clawson, H., Diekhans, M., Giardine, B., Harte, R. A., Hinrichs, A. S., Hsu, F., 
Kober, K. M., Miller, W., Pedersen, J. S., Pohl, A., 
Raney, B. J., Rhead, B., Rosenbloom, K. R., Smith, K. E., Stanke, M., Thakkapallayil, A., Trumbower, H., Wang, T., Zweig, A. S., 
Haussler, D., and Kent, W. J. (2008) The UCSC genome browser database: 2008 update. Nucleic Acids Res 36, D773–D779PubMedCrossRefGoogle Scholar
  14. 14.
    Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D., and Kent, W. J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32, D493–D496PubMedCrossRefGoogle Scholar
  15. 15.
    Bailey, T. L., Williams, N., Misleh, C., and Li, W. W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369–W373PubMedCrossRefGoogle Scholar
  16. 16.
    Rozen, S., and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132, 365–386PubMedGoogle Scholar
  17. 17.
    Rose, M.D., Winston, F., and Hieter, P. (1990) Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  18. 18.
    Bejerano, G., Siepel, A. C., Kent, W. J., and Haussler, D. (2005) Computational screening of conserved genomic DNA in search of functional noncoding elements. Nat Methods 2, 535–545PubMedCrossRefGoogle Scholar
  19. 19.
    Oldenburg, K. R., Vo, K. T., Michaelis, S., and Paddon, C. (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25, 451–452PubMedCrossRefGoogle Scholar
  20. 20.
    Nieduszynski, C. A., Blow, J. J., and Donaldson, A. D. (2005) The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription. Nucleic Acids Res 33, 2410–2420PubMedCrossRefGoogle Scholar
  21. 21.
    Xu, W., Aparicio, J. G., Aparicio, O. M., and Tavare, S. (2006) Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7, 276PubMedCrossRefGoogle Scholar
  22. 22.
    Schiestl, R. H., and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16, 339–346PubMedCrossRefGoogle Scholar
  23. 23.
    Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360PubMedCrossRefGoogle Scholar
  24. 24.
    24.Huang R. Y. Kowalski D. (1993) A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J 12, 4521–4531PubMedGoogle Scholar
  25. 25.
    Huang, R. Y., and Kowalski, D. (1996) Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res 24, 816–823PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Medical Sciences, ForesterhillUniversity of AberdeenUK

Personalised recommendations