Tumor Biomarker Discovery pp 21-38

Part of the Methods in Molecular Biology book series (MIMB, volume 520)

Discovery of Antibody Biomarkers Using Protein Microarrays of Tumor Antigens Cloned in High Throughput

  • Madhumita Chatterjee
  • Jerzy Wojciechowski
  • Michael A. Tainsky


Development of humoral and cellular immunity against self-cellular proteins in cancer patients is a phenomenal observation. The ability of immune system to sense the presence of the disease and to fight of the disease by generating autoantibodies against tumor antigens makes it a natural biosensor. Several screening technologies have been employed for the identification of tumor-specific antibodies in cancer patients. We have developed a multidimensional approach for the identification of diagnostic antigens that utilizes a combination of high-throughput antigen cloning and protein microarray-based serological detection of complex panels of antigens by exploiting the serum autoantibody repertoire directed toward tumor-associated antigens in cancer patients. Furthermore, validation of these antigens by different bioinformatics and biological approaches will reveal the diagnostic/prognostic utility of these antigens for personalized immunotherapy.


Immune response Tumor biomarkers Autoantibodies Epitopes Protein microarrays Immunotherapy 


  1. 1.
    Anderson, K. S. and LaBaer, J. (2005) The sentinel within: exploiting the immune system for cancer biomarkers. J. Proteome. Res. 4, 1123–1133PubMedCrossRefGoogle Scholar
  2. 2.
    Sahin, U., Tureci, O., Schmitt, H., Cochlovius, B., Johannes, T., Schmits, R., Stenner, F., Luo, G., Schobert, I., and Pfreundschuh, M. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. U S A 92, 11810–11813PubMedCrossRefGoogle Scholar
  3. 3.
    Disis, M. L., Calenoff, E., McLaughlin, G., Murphy, A. E., Chen, W., Groner, B., Jeschke, M., Lydon, N., McGlynn, E., Livingston, R. B., and Martin, A. C. (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res. 54, 16–20PubMedGoogle Scholar
  4. 4.
    Disis, M. L., Pupa, S. M., Gralow, J. R., Dittadi, R., Menard, S., and Cheever, M. A. (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J. Clin. Oncol. 15, 3363–3367PubMedGoogle Scholar
  5. 5.
    Gadducci, A., Ferdeghini, M., Buttitta, F., Cosio, S., Fanucchi, A., Annicchiarico, C., Gagetti, O., Bevilacqua, G., and Genazzani, A. R. (1999) Assessment of the prognostic relevance of serum anti-p53 antibodies in epithelial ovarian cancer. Gynecol. Oncol. 72, 76–81PubMedCrossRefGoogle Scholar
  6. 6.
    Lechpammer, M., Lukac, J., Lechpammer, S., Kovacevic, D., Loda, M., and Kusic, Z. (2004) Humoral immune response to p53 correlates with clinical course in colorectal cancer patients during adjuvant chemotherapy. Int. J. Colorectal Dis. 19, 114–120PubMedCrossRefGoogle Scholar
  7. 7.
    Conroy, S. E. and Latchman, D. S. (1996) Do heat shock proteins have a role in breast cancer? Br. J. Cancer 74, 717–721PubMedCrossRefGoogle Scholar
  8. 8.
    Conroy, S. E., Sasieni, P. D., Fentiman, I., and Latchman, D. S. (1998) Autoantibodies to the 90kDa heat shock protein and poor survival in breast cancer patients. Eur. J. Cancer 34, 942–943PubMedGoogle Scholar
  9. 9.
    Sioud, M. and Hansen, M. H. (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur. J. Immunol. 31, 716–725PubMedCrossRefGoogle Scholar
  10. 10.
    Nam, M. J., Madoz-Gurpide, J., Wang, H., Lescure, P., Schmalbach, C. E., Zhao, R., Misek, D. E., Kuick, R., Brenner, D. E., and Hanash, S. M. (2003) Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics 3, 2108–2115PubMedCrossRefGoogle Scholar
  11. 11.
    Brass, N., Racz, A., Bauer, C., Heckel, D., Sybrecht, G., and Meese, E. (1999) Role of amplified genes in the production of autoantibodies. Blood 93, 2158–2166PubMedGoogle Scholar
  12. 12.
    Naora, H., Yang, Y. Q., Montz, F. J., Seidman, J. D., Kurman, R. J., and Roden, R. B. (2001) A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells. Proc. Natl Acad. Sci. U S A 98, 4060–4065PubMedCrossRefGoogle Scholar
  13. 13.
    Scanlan, M. J., Gout, I., Gordon, C. M., Williamson, B., Stockert, E., Gure, A. O., Jager, D., Chen, Y. T., Mackay, A., O’Hare, M. J., and Old, L. J. (2001) Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun. 1, 4PubMedGoogle Scholar
  14. 14.
    Chen, Y. T., Scanlan, M. J., Sahin, U., Tureci, O., Gure, A. O., Tsang, S., Williamson, B., Stockert, E., Pfreundschuh, M., and Old, L. J. (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. U S A 94, 1914–1918PubMedCrossRefGoogle Scholar
  15. 15.
    Jager, D., Stockert, E., Gure, A. O., Scanlan, M. J., Karbach, J., Jager, E., Knuth, A., Old, L. J., and Chen, Y. T. (2001) Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res. 61, 2055–2061PubMedGoogle Scholar
  16. 16.
    Jongeneel, V. (2001) Towards a cancer immunome database. Cancer Immun. 1, 3PubMedGoogle Scholar
  17. 17.
    Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J., and Chen, Y. T. (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32PubMedCrossRefGoogle Scholar
  18. 18.
    De, S. C., De, B. O., Faraoni, I., Lurquin, C., Brasseur, F., and Boon, T. (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl Acad. Sci. U S A 93, 7149–7153CrossRefGoogle Scholar
  19. 19.
    Stockert, E., Jager, E., Chen, Y. T., Scanlan, M. J., Gout, I., Karbach, J., Arand, M., Knuth, A., and Old, L. J. (1998) A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med. 187, 1349–1354PubMedCrossRefGoogle Scholar
  20. 20.
    Brass, N., Heckel, D., Sahin, U., Pfreundschuh, M., Sybrecht, G. W., and Meese, E. (1997) Translation initiation factor eIF-4gamma is encoded by an amplified gene and induces an immune response in squamous cell lung carcinoma. Hum. Mol. Genet. 6, 33–39PubMedCrossRefGoogle Scholar
  21. 21.
    Stone, B., Schummer, M., Paley, P. J., Thompson, L., Stewart, J., Ford, M., Crawford, M., Urban, N., O’Briant, K., and Nelson, B. H. (2003) Serologic analysis of ovarian tumor antigens reveals a bias toward antigens encoded on 17q. Int. J. Cancer 104, 73–84PubMedCrossRefGoogle Scholar
  22. 22.
    Jager, D., Jager, E., and Knuth, A. (2001) Immune responses to tumour antigens: implications for antigen specific immunotherapy of cancer. J. Clin. Pathol. 54, 669–674PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, Y. T., Gure, A. O., Tsang, S., Stockert, E., Jager, E., Knuth, A., and Old, L. J. (1998) Identification of multiple cancer/testis antigens by allogeneic antibody screening of a melanoma cell line library. Proc. Natl Acad. Sci. U S A 95, 6919–6923PubMedCrossRefGoogle Scholar
  24. 24.
    Chatterjee, M., Mohapatra, S., Ionan, A., Bawa, G., Ali-Fehmi, R., Wang, X., Nowak, J., Ye, B., Nahhas, F. A., Lu, K., Witkin, S. S., Fishman, D., Munkarah, A., Morris, R., Levin, N. K., Shirley, N. N., Tromp, G., Abrams, J., Draghici, S., and Tainsky, M. A. (2006) Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 66, 1181–1190PubMedCrossRefGoogle Scholar
  25. 25.
    Draghici, S., Chatterjee, M., and Tainsky, M. A. (2005) Epitomics: serum screening for the early detection of cancer on microarrays using complex panels of tumor antigens. Expert Rev. Mol. Diagn. 5, 735–743PubMedCrossRefGoogle Scholar
  26. 26.
    Carmen, S. and Jermutus, L. (2002) Concepts in antibody phage display. Brief Funct. Genomic. Proteomic. 1, 189–203PubMedCrossRefGoogle Scholar
  27. 27.
    Smith, G. P. and Petrenko, V. A. (1997) Phage display. Chem. Rev. 97, 391–410PubMedCrossRefGoogle Scholar
  28. 28.
    Pepe, M. S., Longton, G., Anderson, G. L., and Schummer, M. (2003) Selecting differentially expressed genes from microarray experiments. Biometrics 59, 133–142PubMedCrossRefGoogle Scholar
  29. 29.
    Angelopoulou, K., Yu, H., Bharaj, B., Giai, M., and Diamandis, E. P. (2000) p53 gene mutation, tumor p53 protein overexpression, and serum p53 autoantibody generation in patients with breast cancer. Clin. Biochem. 33, 53–62PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., Mehra, R., Montie, J. E., Pienta, K. J., Sanda, M. G., Kantoff, P. W., Rubin, M. A., Wei, J. T., Ghosh, D., and Chinnaiyan, A. M. (2005) Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353, 1224–1235PubMedCrossRefGoogle Scholar
  31. 31.
    Zhong, L., Hidalgo, G. E., Stromberg, A. J., Khattar, N. H., Jett, J. R., and Hirschowitz, E. A. (2005) Using protein microarray as a diagnostic assay for non-small cell lung cancer. Am. J. Respir. Crit Care Med. 172, 1308–1314PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Madhumita Chatterjee
    • 1
  • Jerzy Wojciechowski
    • 1
  • Michael A. Tainsky
    • 1
  1. 1.Department of Molecular Biology and GeneticsBarbara Ann Karmanos Cancer Institute, Wayne State UniversityDetroitUSA

Personalised recommendations