Nuclear Receptors: One Big Family

  • Iain J. McEwan
Part of the Methods in Molecular Biology™ book series (MIMB, volume 505)

Abstract

It is just over 20 years since the first steroid receptor cDNAs were cloned, a development that led to the birth of a superfamily of ligand activated transcription factors: the nuclear receptors. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins and prostaglandins. These molecules act as sensors of the extracellular and intracellular environment and play crucial roles controlling development, differentiation, metabolic homeostasis, and reproduction. Since the original cloning experiments considerable progress has been made in our understanding of the structure, mechanisms of action and biology of this important family of proteins.

Key words

Steroid hormones Glucocorticoid receptors Estrogen receptors Retinoic acid receptors Orphan receptors Gene regulation Phosphorylation Acetylation Sumoylation Hormone resistance 

References

  1. 1.
    1.Evans, R. M. (1988) The Steroid and Thyroid Hormone Receptor Superfamily.Science.240, 889–895.CrossRefPubMedGoogle Scholar
  2. 2.
    2.Escriva, H., Bertrand, S., and Laudet, V.(2004) The Evolution of the Nuclear Receptor Superfamily.Essays Biochem. 40, 11–26.PubMedGoogle Scholar
  3. 3.
    3.Thornton, J. W. (2001) Evolution of Vertebrate Steroid Receptors from an Ancestral Estrogen Receptor by Ligand Exploitation and Serial Genome Expansions.Proc. Natl. Acad. Sci. USA. 98, 5671–5676.CrossRefPubMedGoogle Scholar
  4. 4.
    4.Thornton, J. W., Need, E., and Crews, D. (2003) Resurrecting the Ancestral Steroid Receptor: Ancient Origin of Estrogen Signalling.Science. 301, 1714–1717.CrossRefPubMedGoogle Scholar
  5. 5.
    5.Barnett, P. , Tabak, H. F., and Hettema, E. H. (2000) Nuclear Receptors Arose from Pre-Existing Protein Modules during Evolution.Trends Biochem. Sci. 25, 227–228.CrossRefPubMedGoogle Scholar
  6. 6.
    6.Egea, P. F., Klaholz, B. P. , and Moras, D. (2000) Ligand-Protein Interactions in Nuclear Receptors of Hormones.FEBS Lett. 476, 62–67.CrossRefPubMedGoogle Scholar
  7. 7.
    7.Pike, A. C., Brzozowski, A. M., and Hub-bard, R. E. (2000) A Structural Biologist's View of the Oestrogen Receptor.J. Steroid Biochem. Mol. Biol. 74, 261–268.CrossRefPubMedGoogle Scholar
  8. 8.
    8.Ingraham, H. A., and Redinbo, M. R. (2005) Orphan Nuclear Receptors Adopted by Crystallography.Curr. Opin. Struct. Biol. 15, 708–715.CrossRefPubMedGoogle Scholar
  9. 9.
    9.Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G. (1997) A Signature Motif in Transcriptional Co-Activators Mediates Binding to Nuclear Receptors.Nature.387, 733–736.CrossRefPubMedGoogle Scholar
  10. 10.
    10.Darimont, B. D., Wagner, R. L., Apriletti, J. W., Stallcup, M. R., Kushner, P. J., Baxter, J. D., Fletterick, R. J., and Yamamoto, K. R. (1998) Structure and Specificity of Nuclear Receptor-Coactivator Interactions.Genes Dev. 12, 3343–3356.CrossRefPubMedGoogle Scholar
  11. 11.
    11.McInerney, E. M., Rose, D. W., Flynn, S. E., Westin, S., Mullen, T. M., Krones, A., Inostroza, J., Torchia, J., Nolte, R. T., Assa-Munt, N., Milburn, M. V., Glass, C. K., and Rosenfeld, M. G. (1998) Determinants of Coactivator LXXLL Motif Specificity in Nuclear Receptor Transcriptional Activation.Genes Dev. 12, 3357–3368.CrossRefPubMedGoogle Scholar
  12. 12.
    12.Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosen-feld, M. G., Willson, T. M., Glass, C. K., and Milburn, M. V. (1998) Ligand Binding and Co-Activator Assembly of the Peroxisome Proliferator-Activated Receptor-Gamma.Nature.395, 137–143.CrossRefPubMedGoogle Scholar
  13. 13.
    13.Tanenbaum, D. M., Wang, Y., Williams, S. P. , and Sigler, P. B. (1998) Crystallographic Comparison of the Estrogen and Progesterone Receptor's Ligand Binding Domains.Proc. Natl. Acad. Sci. USA. 95, 5998–6003.CrossRefPubMedGoogle Scholar
  14. 14.
    14.Bourguet, W., Vivat, V., Wurtz, J. M., Cham-bon, P., Gronemeyer, H., and Moras, D. (2000) Crystal Structure of a Heterodimeric Complex of RAR and RXR Ligand-Binding Domains.Mol. Cell.5, 289–298.CrossRefPubMedGoogle Scholar
  15. 15.
    15.Kong, E. H., Heldring, N., Gustafsson, J. A., Treuter, E., Hubbard, R. E., and Pike, A. C. (2005) Delineation of a Unique Protein-Protein Interaction Site on the Surface of the Estrogen Receptor.Proc. Natl. Acad. Sci. USA. 102, 3593–3598.CrossRefPubMedGoogle Scholar
  16. 16.
    16.Claessens, F., and Gewirth, D. T. (2004) DNA Recognition by Nuclear Receptors.Essays Biochem. 40, 59–72.PubMedGoogle Scholar
  17. 17.
    17.Perlmann, T., Rangarajan, P. N., Umesono, K., and Evans, R. M. (1993) Determinants for Selective RAR and TR Recognition of Direct Repeat HREs.Genes Dev. 7, 1411–1422.CrossRefPubMedGoogle Scholar
  18. 18.
    18.Kurokawa, R., Yu, V. C., Naar, A., Kyaku-moto, S., Han, Z., Silverman, S., Rosenfeld, M. G., and Glass, C. K. (1993) Differential Orientations of the DNA-Binding Domain and Carboxy-Terminal Dimerization Interface Regulate Binding Site Selection by Nuclear Receptor Heterodimers.Genes Dev. 7, 1423–1435.CrossRefPubMedGoogle Scholar
  19. 19.
    19.Rastinejad, F., Perlmann, T., Evans, R. M., and Sigler, P. B. (1995) Structural Determinants of Nuclear Receptor Assembly on DNA Direct Repeats.Nature.375, 203–211.CrossRefPubMedGoogle Scholar
  20. 20.
    20.Lefstin, J. A., and Yamamoto, K. R. (1998) Allosteric Effects of DNA on Transcriptional Regulators.Nature.392, 885–888.CrossRefPubMedGoogle Scholar
  21. 21.
    21.Lavery, D. N., and McEwan, I. J. (2005) Structure and Function of Steroid Receptor AF1 Transactivation Domains: Induction of Active Conformations.Biochem. J. 391, 449–464.CrossRefPubMedGoogle Scholar
  22. 22.
    22.He, B., Gampe, R. T., Jr, Kole, A. J., Hnat, A. T., Stanley, T. B., An, G., Stewart, E. L., Kalman, R. I., Minges, J. T., and Wilson, E. M. (2004) Structural Basis for Andro-gen Receptor Interdomain and Coactivator Interactions Suggests a Transition in Nuclear Receptor Activation Function Dominance.Mol. Cell.16, 425–438.CrossRefPubMedGoogle Scholar
  23. 23.
    23.Hi, R., Osada, S., Yumoto, N., and Osumi, T. (1999) Characterization of the Amino-Terminal Activation Domain of Peroxi-some Proliferator-Activated Receptor Alpha. Importance of Alpha-Helical Structure in the Transactivating Function.J. Biol. Chem. 274, 35152–35158.CrossRefPubMedGoogle Scholar
  24. 24.
    24.Kumar, R., and Thompson, E. B. (2003) Transactivation Functions of the N-Terminal Domains of Nuclear Hormone Receptors: Protein Folding and Coactivator Interactions.Mol. Endocrinol. 17, 1–10.CrossRefPubMedGoogle Scholar
  25. 25.
    25.Wardell, S. E., Kwok, S. C., Sherman, L., Hodges, R. S., and Edwards, D. P. (2005) Regulation of the Amino-Terminal Transcription Activation Domain of Progesterone Receptor by a Cofactor-Induced Protein Folding Mechanism.Mol. Cell. Biol. 25, 8792–8808.CrossRefPubMedGoogle Scholar
  26. 26.
    26.Bolton, E. C., So, A. Y., Chaivorapol, C., Haqq, C. M., Li, H., and Yamamoto, K. R. (2007) Cell- and Gene-Specific Regulation of Primary Target Genes by the Androgen Receptor.Genes Dev. 21, 2005–2017.CrossRefPubMedGoogle Scholar
  27. 27.
    27.Massie, C. E., Adryan, B., Barbosa-Morais, N. L., Lynch, A. G., Tran, M. G., Neal, D. E., and Mills, I. G. (2007) New Androgen Receptor Genomic Targets show an Interaction with the ETS1 Transcription Factor.EMBO Rep. 8, 871–878.CrossRefPubMedGoogle Scholar
  28. 28.
    28.Wang, Q., Li, W., Liu, X. S., Carroll, J. S., Janne, O. A., Keeton, E. K., Chinnaiyan, A. M., Pienta, K. J., and Brown, M. (2007) A Hierarchical Network of Transcription Factors Governs Androgen Receptor-Dependent Prostate Cancer Growth.Mol. Cell.27, 380–392.CrossRefPubMedGoogle Scholar
  29. 29.
    29.Carroll, J. S., Liu, X. S., Brodsky, A. S., Li, W., Meyer, C. A., Szary, A. J., Eeckhoute, J., Shao, W., Hestermann, E. V., Geistlin-ger, T. R., Fox, E. A., Silver, P. A., and Brown, M. (2005) Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1.Cell.122, 33–43.CrossRefPubMedGoogle Scholar
  30. 30.
    30.Carroll, J. S., Meyer, C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., Wang, Q., Bekiranov, S., Sementchenko, V., Fox, E. A., Silver, P. A., Gingeras, T. R., Liu, X. S., and Brown, M. (2006) Genome-Wide Analysis of Estrogen Receptor Binding Sites.Nat. Genet. 38, 1289–1297.CrossRefPubMedGoogle Scholar
  31. 31.
    31.Kininis, M., Chen, B. S., Diehl, A. G., Isaacs, G. D., Zhang, T., Siepel, A. C., Clark, A. G., and Kraus, W. L. (2007) Genomic Analyses of Transcription Factor Binding, Histone Acetylation, and Gene Expression Reveal Mechanistically Distinct Classes of Estrogen-Regulated Promoters.Mol. Cell. Biol. 27, 5090–5104.CrossRefPubMedGoogle Scholar
  32. 32.
    32.So, A. Y., Chaivorapol, C., Bolton, E. C., Li, H., and Yamamoto, K. R. (2007) Determinants of Cell- and Gene-Specific Transcrip-tional Regulation by the Glucocorticoid Receptor.PLoS Genet. 3, e94.CrossRefPubMedGoogle Scholar
  33. 33.
    33.Acevedo, M. L., and Kraus, W. L. (2004) Transcriptional Activation by Nuclear Receptors.Essays Biochem. 40, 73–88.PubMedGoogle Scholar
  34. 34.
    34.Rosenfeld, M. G., Lunyak, V. V., and Glass, C. K. (2006) Sensors and Signals: A coac-tivator/corepressor/epigenetic Code for Integrating Signal-Dependent Programs of Transcriptional Response.Genes Dev. 20, 1405–1428.CrossRefPubMedGoogle Scholar
  35. 35.
    35.Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., and Gannon, F. (2003) Estrogen Receptor-Alpha Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter.Cell.115, 751–763.CrossRefPubMedGoogle Scholar
  36. 36.
    36.Chen, Y. X., Du, J. T., Zhou, L. X., Liu, X. H., Zhao, Y. F., Nakanishi, H., and Li, Y. M. (2006) Alternative O-GlcNAcylation/O-Phosphorylation of Ser16 Induce Different Conformational Disturbances to the N Terminus of Murine Estrogen Receptor Beta.Chem. Biol. 13, 937–944.CrossRefPubMedGoogle Scholar
  37. 37.
    37.Faus, H., and Haendler, B. (2006) Post-Translational Modifications of Steroid Receptors.Biomed. Pharmacother. 60, 520–528.CrossRefPubMedGoogle Scholar
  38. 38.
    38.Popov, V. M., Wang, C., Shirley, L. A., Rosenberg, A., Li, S., Nevalainen, M., Fu, M., and Pestell, R. G. (2007) The Functional Significance of Nuclear Receptor Acetylation.Steroids. 72, 221–230.CrossRefPubMedGoogle Scholar
  39. 39.
    39.Weigel, N. L., and Moore, N. L. (2007) Kinases and Protein Phosphorylation as Regulators of Steroid Hormone Action.Nucl. Recept. Signal. 5, e005.PubMedGoogle Scholar
  40. 40.
    40.Li, S., and Shang, Y. (2007) Regulation of SRC Family Coactivators by Post-Transla-tional Modifications.Cell. Signal. 19, 1101–1112.CrossRefPubMedGoogle Scholar
  41. 41.
    41.Gottlieb, B., Beitel, L. K., Wu, J., Elhaji, Y. A., and Trifiro, M. (2004) Nuclear Receptors and Disease: Androgen Receptor.Essays Bio-chem. 40, 121–136.Google Scholar
  42. 42.
    42.Hughes, I. A., and Deeb, A. (2006) Andro-gen Resistance.Best Pract. Res. Clin. Endo-crinol. Metab. 20, 577–598.CrossRefGoogle Scholar
  43. 43.
    43.Gurnell, M., and Chatterjee, V. K. (2004) Nuclear Receptors in Disease: Thyroid Receptor Beta, Peroxisome-Proliferator-Acti-vated Receptor Gamma and Orphan Receptors.Essays Biochem. 40, 169–189.PubMedGoogle Scholar
  44. 44.
    44.Lefebvre, P. , Chinetti, G., Fruchart, J. C., and Staels, B. (2006) Sorting Out the Roles of PPAR Alpha in Energy Metabolism and Vascular Homeostasis.J. Clin. Invest. 116, 571–580.CrossRefPubMedGoogle Scholar
  45. 45.
    45.Semple, R. K., Chatterjee, V. K., and O'Rahilly, S. (2006) PPAR Gamma and Human Metabolic Disease.J. Clin. Invest. 116, 581–589.CrossRefPubMedGoogle Scholar
  46. 46.
    46.Brzozowski, A. M., Pike, A. C., Dauter, Z., Hubbard, R. E., Bonn, T., Engstrom, O., Ohman, L., Greene, G. L., Gustafsson, J. A., and Carlquist, M. (1997) Molecular Basis of Agonism and Antagonism in the Oestrogen Receptor.Nature.389, 753–758.CrossRefPubMedGoogle Scholar
  47. 47.
    47.Kr ylova, I. N., Sablin, E. P., Moore, J., Xu, R. X., Waitt, G. M., MacKay, J. A., Juzumiene, D., Bynum, J. M., Madauss, K., Montana, V., Lebedeva, L., Suzawa, M., Williams, J. D., Williams, S. P. , Guy, R. K., Thornton, J. W., Fletterick, R. J., Willson, T. M., and Ingraham, H. A. (2005) Structural Analyses Reveal Phosphatidyl Inositols as Ligands for the NR5 Orphan Receptors SF-1 and LRH-1.Cell.120, 343–355.CrossRefPubMedGoogle Scholar
  48. 48.
    48.Wang, Z., Benoit, G., Liu, J., Prasad, S., Aar-nisalo, P. , Liu, X., Xu, H., Walker, N. P., and Perlmann, T. (2003) Structure and Function of Nurr1 Identifies a Class of Ligand-Independent Nuclear Receptors.Nature.423, 555–560.CrossRefPubMedGoogle Scholar
  49. 49.
    49.Schwabe, J. W., Chapman, L., Finch, J. T., and Rhodes, D. (1993) The Crystal Structure of the Estrogen Receptor DNA-Binding Domain Bound to DNA: How Receptors Discriminate between their Response Elements.Cell.75, 567–578.CrossRefPubMedGoogle Scholar
  50. 50.
    Solomon, I. H., Hager, J. M., Safi, R., McDonnell, D. P., Redinbo, M. R., and Ortlund, E. A. (2005) Crystal Structure of the Human LRH-1 DBD-DNA Complex Reveals Ftz-F1 Domain Positioning is Required for Receptor Activity.J. Mol. Biol. 354, 1091–1102.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Iain J. McEwan
    • 1
  1. 1.School of Medical SciencesUniversity of AberdeenAberdeenScotland

Personalised recommendations