Biosensors and Biodetection pp 179-187

Part of the Methods in Molecular Biology™ book series (MIMB, volume 503)

Phase Sensitive Interferometry for Biosensing Applications

  • Digant P. Davé

Summary

A simple yet highly sensitive implementation of an interferometric technique for a label-free molecular biosensing application is described. The intereferometric detection method is based on the phase-sensitive detection of spectral interference fringes. The change in optical path length due to binding of biomolecules on functionalized optically clear substrates can be quantified by detecting the change in the phase of the spectral fringes. The common path interferometeric design permits measurement of sub- monolayer binding of biomolecules to the sensor surfaces.

Key words

Interferometry Biosensor Phase-sensitive 

References

  1. 1.
    G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, N. J. Freeman, “A new quantitative optical biosensor for protein characterization,” Biosensors and Bioelectronics 19, 383 (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    V. S. -Y. Lin, K. Motesharei, K. -P. S. Dancil, M. J. Sailor, M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, H. S. Sørensen, “Molecular interactions studied back-scattering interferometry,” Science 317, 1732 (2007)CrossRefPubMedGoogle Scholar
  4. 4.
    L. Peng, M. M. Varma, W. Cho, F. E. Regnier, D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Applied Optics. 46, 5384 (2007)CrossRefPubMedGoogle Scholar
  5. 5.
    M. M. Varma, H. D. Inerowicz, F. E. Reg-nier, D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interfer-ometry,” Biosensors and Bioelectronics 19, 1371–1376 (2004)CrossRefPubMedGoogle Scholar
  6. 6.
    M. M. Varma, D. D. Nolte, H. D. Inerowicz, F. E. Regnier, “Spinning-disk self-referencing interferometry of antigen–antibody recogni tion,” Optics Letters 29, 950–952 (2004)CrossRefPubMedGoogle Scholar
  7. 7.
    K. Haupt, A. -S. Belmont, S. Jaeger, D. Knopp, R. Niessner, G. Gauglitz, “Molecularly imprinted polymer films for reflectometric interference spectroscopic sensors,” Biosensors and Bioelec-tronics 22(12), 3267–3272 (2007)CrossRefGoogle Scholar
  8. 8.
    K. AddedKroger, J. Bauer, B. Fleckenstein, J. Rademann, G. Jung, G. Gauglitz, “Epitope-mapping of transglutaminase with parallel label-free optical detection,” Biosensors and Bioelectronics 17(11–12), 937–944 (2002)CrossRefGoogle Scholar
  9. 9.
    A. Brecht, G. Gauglitz, G. Kraus, G. Lang, J. Piehler, J. Seemann, “Application of reflec-tometric interference spectroscopy to chemical and biochemical sensing,” In Sensor 95, 355–360 (1995)Google Scholar
  10. 10.
    K. Schmitt, B. Schirmer, A. Brandenburg, “Development of a highly sensitive interfero-metric biosensor,” Proceedings of SPIE 5461, 22 (2004)CrossRefGoogle Scholar
  11. 11.
    O. Birkert, G. Gauglitz, “Development of an assay for label-free high-throughput screening of thrombin inhibitors by use of reflecto-metric interference spectroscopy,” Analytical Bioanalytical Chemistry 372, 141 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Hast, H. Heikkinen, L. Krehut, R. Myllyla, “Direct optical Biosensor based on optical feedback interferometry,” IEEE, 177 (2005)Google Scholar
  13. 13.
    W. B. Nowall, N. Dontha, W. G. Kuhr, “Electron transfer kinetics at a biotin/avidin patterned glassy carbon electrode,” Biosensors and Bioelectronics 13, 1237 (1998)CrossRefPubMedGoogle Scholar
  14. 14.
    C. J. Easley, L. A. Legendre, M. G. Roper, T. A. Wavering, J. P. Ferrance and J. P. Landers, “Extrinsic fabry-perot interferometry for noncontact temperature control of nanoliter-volume enzymatic reactions in glass micro chips,” Analytical Chemistry 77, 1038 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    B. H. Schneider, J. G. Edwards, N. F. Hartman, “Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantifica tion of nucleic acids, proteins, and pathogens,” Clinical Chemistry 43, 1757 (1997)PubMedGoogle Scholar
  16. 16.
    K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosensors and Bioelec-tronics 22, 2591 (2007)CrossRefGoogle Scholar
  17. 17.
    N. Kinrot, M. Nathan, “Investigation of a periodically segmented waveguide Fabry–Pérot interferometer for use as a chemical/ biosensor,” Journal of Lightwave Technology 24, 2139 (2006)CrossRefGoogle Scholar
  18. 18.
    D. A. Markov, K. Swinney, D. J. Bornhop, “Label-free molecular interaction determina tions with nanoscale interferometr1y,” J. Am. Chem. Soc. 126, 16659 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    J. Lu, C. M. Strohsahl, B. L. Miller, L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Analytical Chemistry 76, 4416 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express 11, 889 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. Bouma, “Improved signal-to-noise ratio in spectral-domain com pared with time-domain optical coherence tomography,” Optics Letters 28, 2067 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Choma, M. Sarunic, C. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomogra phy,” Optics Express 11, 2183 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, J. A. Izatt, “Spectral-domain phase microscopy,” Optics Letters 30, 1162 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    C. Joo, T. Akkin, B. Cense, B. H. Park, J. F. de Boer, “Spectral-domain optical coher ence phase microscopy for quantitative phase-contrast imaging,” Optics Letters 30, 2131 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    N. Nassif, B. Cense, B. H. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomog raphy of the human retina and optic nerve,” Optics Express 12, 367 (2004)CrossRefPubMedGoogle Scholar
  26. 26.
    B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. F. de Boer, “Real-time fiber-based multi-functional spec tral-domain optical coherence tomography at 1.3 μm,” Optics Express 13, 3931 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Digant P. Davé
    • 1
  1. 1.University of Texas at ArlingtonArlingtonUSA

Personalised recommendations