Biosensors and Biodetection pp 65-88 | Cite as
Surface Plasmon Resonance Biosensing
Summary
Surface plasmon resonance (SPR) biosensors belong to label-free optical biosensing technologies. The SPR method is based on optical measurement of refractive index changes associated with the binding of analyte molecules in a sample to biorecognize molecules immobilized on the SPR sensor. Since late 1990's, SPR biosensors have become the main tool for the study of biomolecular interactions both in life science and pharmaceutical research. In addition, they have been increasingly applied in the detection of chemical and biological substances in important areas such as medical diagnostics, environmental monitoring, food safety and security. This chapter reviews the main principles of SPR biosensor technology and discusses applications of this technology for rapid, sensitive and specific detection of chemical and biological analytes.
Key words
Optical biosensors Affinity biosensing Biorecognition elements Detection of chemical and biological species BioassaysReferences
- 1.Homola, J. (2003) Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry 377, 528–539CrossRefPubMedGoogle Scholar
- 2.Homola, J., Vaisocherová, H., Dostálek, J., and Piliarik, M. (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37, 26–36CrossRefPubMedGoogle Scholar
- 3.Boozer, C., Kim, G., Cong, S.X., Guan, H.W., and Londergan, T. (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Current Opinion in Biotechnology 17, 400–405CrossRefPubMedGoogle Scholar
- 4.Rich, R.L., and Myszka, D.G. (2006) Survey of the year 2005 commercial optical biosensor literature. Journal of Molecular Recognition 19, 478–534CrossRefPubMedGoogle Scholar
- 5.Homola, J. (2006) Surface plasmon resonance based sensors. Springer-VerlagCrossRefGoogle Scholar
- 6.Raether, H. (1988) Surface-plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics 111, 1–133CrossRefGoogle Scholar
- 7.de Feijter, J.A., Benjamins, J., and Veer, F.A. (1978) Ellipsometry as a tool to study the adsorption of synthetic and biopolymers at the air–water interface. Biopolymers 17, 1759–1772CrossRefGoogle Scholar
- 8.Tumolo, T., Angnes, L., and Baptista, M.S. (2004) Determination of the refractive index increment (dn/dc) of molecule and mac-romolecule solutions by surface plasmon resonance. Analytical Biochemistry 333, 273–279CrossRefPubMedGoogle Scholar
- 9.Nenninger, G.G., Piliarik, M., and Homola, J. (2002) Data analysis for optical sensors based on spectroscopy of surface plasmons. Measurement Science … Technology 13, 2038–2046CrossRefGoogle Scholar
- 10.Piliarik, M., Vaisocherová, H., and Homola, J. (2007) Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensorors and Actuators B Chem 121, 187–193CrossRefGoogle Scholar
- 11.Tomizaki, K.Y., Usui, K., and Mihara, H. (2005) Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 6, 782–799CrossRefPubMedGoogle Scholar
- 12.Angenendt, P. (2005) Progress in protein and antibody microarray technology. Drug Discovery Today 10, 503–511CrossRefPubMedGoogle Scholar
- 13.Elia, G., Silacci, M., Scheurer, S., Scheuermann, J., and Neri, D. (2002) Affinitycapture reagents for protein arrays. Trends Biotechnology 20, S19–S22CrossRefGoogle Scholar
- 14.Koubová, V., Brynda, E., Karasová, L., Škvor, J., Homola, J., Dostálek, J., Tobiška, P. , and Rošický, J. (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensorors and Actuators B Chem 74, 100–105CrossRefGoogle Scholar
- 15.Lofas, S., Johnsson, B., Edstrom, A., Hansson, A., Lindquist, G., Hillgren, R.M.M., and Stigh, L. (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface-plasmon resonance sensors. Biosensors … Bioelectronics 10, 813–822CrossRefGoogle Scholar
- 16.Busse, S., Scheumann, V., Menges, B., and Mittler, S. (2002) Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosensors … Bioelectronics 17, 704–710CrossRefGoogle Scholar
- 17.Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., and Jiang, S. (2004) DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge. Langmuir 20, 8090–8095CrossRefPubMedGoogle Scholar
- 18.Oshannessy, D.J., Brighamburke, M., and Peck, K. (1992) Immobilization chemistries suitable for use in the biacore surface-plasmon resonance detector. Analytical Biochemistry 205, 132–136CrossRefGoogle Scholar
- 19.Knoll, W., Liley, M., Piscevic, D., Spinke, J., and Tarlov, M.J. (1997) Supramolecular architectures for the functionalization of solid surfaces. Advances in Biophysics 34, 231–251CrossRefPubMedGoogle Scholar
- 20.Myszka, D.G., He, X., Dembo, M., Morton, T.A., and Goldstein, B. (1998) Extending the range of rate constants available from BIACORE: interpreting mass transportinfluenced binding data. Biophysical Journal 75, 583–594CrossRefPubMedGoogle Scholar
- 21.Sikavitsas, V., Nitsche, J.M., and Mountziaris, T.J. (2002) Transport and kinetic processes underlying biomolecular interactions in the BIACORE optical biosensor. Biotechnology Progress 18, 885–897CrossRefPubMedGoogle Scholar
- 22.Witz, J. (1999) Kinetic analysis of analyte binding by optical biosensors: hydrodynamic penetration of the analyte flow into the polymer matrix reduces the influence of mass transport. Analytical Biochemistry 270, 201–206CrossRefPubMedGoogle Scholar
- 23.Ward, L.D., and Winzor, D.J. (2000) Relative merits of optical biosensors based on flow cell and cuvette designs. Analytical Biochemistry 285, 179–193CrossRefPubMedGoogle Scholar
- 24.Sjölander, S., and Urbanitzky, C. (1991) Integrated fluid handling system for biomolecular interaction analysis. Analytical Chemistry 63, 2338–2345CrossRefPubMedGoogle Scholar
- 25.Wang, H., Chen, S., Li, L., and Jiang, S. (2005) Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir 21, 2633–2636CrossRefPubMedGoogle Scholar
- 26.Lahiri, J., Isaacs, L., Tien, J., and Whitesides, G.M. (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Analytical Chemistry 71, 777–790CrossRefPubMedGoogle Scholar
- 27.Vaisocherová, H., Zítová, A., Lachmanová, M., Štepánek, J., Kralíková, S., Liboška, R., Rejman, D., Rosenberg, I., and Homola, J. (2006) Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers 82, 394–398CrossRefPubMedGoogle Scholar
- 28.Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W.L., Chen, C., Zhai, Y., Dairkee, S.H., Ljung, B.M., Gray, J.W., and Albertson, D.G. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics 20, 207–211CrossRefPubMedGoogle Scholar
- 29.Homola, J., Dostálek, J., Chen, S.F., Rasooly, A., Jiang, S.Y., and Yee, S.S. (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of Food Microbiology 75, 61–69CrossRefPubMedGoogle Scholar
- 30.Oh, B.K., Kim, Y.K., Lee, W., Bae, Y.M., Lee, W.H., and Choi, J.W. (2003) Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosensors … Bioelectronics 18, 605–611CrossRefGoogle Scholar
- 31.Thomsen, V., Schatzlein, D., and Mercuro, D. (2003) Limits of detection in spectroscopy. Spectroscopy 18, 112–114Google Scholar
- 32.Gobi, K.V., Tanaka, H., Shoyama, Y., and Miura, N. (2004) Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging. Biosensors & Bioelectronics 20, 350–357CrossRefGoogle Scholar
- 33.Dostálek, J., and Homola, J. (2008) Surface plasmon resonance sensor based on an array of diffraction gratings for highly-parallelized observation of biomolecular interactions, Sensors and Actuators B: Chemical 129, 303–310CrossRefGoogle Scholar