Clone-Based Functional Genomics

  • Annick Bleys
  • Mansour Karimi
  • Pierre Hilson
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 553)

Abstract

Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a wide range of species. Taking advantage of these developments, novel techniques have been implemented to investigate systematically diverse aspects of gene and protein functions underpinning biology processes. Here, we review functional genomics applications that require the mass production of cloned sequence repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in large-scale cloning projects and we provide an up-to-date overview of the clone resources available for model plant species and of the current applications that may be scaled up for systematic plant gene studies.

Key words

Functional genomics recombinational cloning clone collections ORFeome hairpin RNA artificial microRNA 

Notes

Acknowledgments

This work was supported by the 6th European Integrated Projects AGRON-OMICS (grant no. LSHG-CT-2006-037704). We thank Martine De Cock for help in preparing the manuscript.

References

  1. 1.
    Hieter, P. and Boguski, M. (1997) Functional genomics: it’s all how you read it. Science. 278, 601–602.PubMedGoogle Scholar
  2. 2.
    Fleischmann, R.D., Adams, M.D., White, O., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 269, 496–512.PubMedGoogle Scholar
  3. 3.
    Goffeau, A., Barrell, B.G., Bussey, H., et al. (1996) Life with 6,000 genes. Science. 274, 546, 563–567.Google Scholar
  4. 4.
    C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 282, 2012–2018.Google Scholar
  5. 5.
    Adams, M.D., Celniker, S.E., Holt, R.A., et al. (2000) The genome sequence of Drosophila melanogaster. Science. 287, 2185–2195.PubMedGoogle Scholar
  6. 6.
    Venter, J.C., Adams, M.D., Myers, E.W., et al. (2001) The sequence of the human genome. Science. 291, 1304–1351.PubMedGoogle Scholar
  7. 7.
    The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796–815.Google Scholar
  8. 8.
    International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature. 436, 793–800.Google Scholar
  9. 9.
    Tuskan, G.A., DiFazio, S., Jansson, S., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 313, 1596–1604.PubMedGoogle Scholar
  10. 10.
    Jaillon, O., Aury, J.M., Noel, B., et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 449, 463–467.PubMedGoogle Scholar
  11. 11.
    Smith, V., Botstein, D., and Brown, P.O. (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc. Natl. Acad. Sci. USA. 92, 6479–6483.PubMedGoogle Scholar
  12. 12.
    Smith, V., Chou, K.N., Lashkari, D., Botstein, D., and Brown, P.O. (1996) Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science. 274, 2069–2074.PubMedGoogle Scholar
  13. 13.
    Giaever, G., Chu, A.M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418, 387–391.PubMedGoogle Scholar
  14. 14.
    Yuan, D.S., Pan, X., Ooi, S.L., et al. (2005) Improved microarray methods for profiling the yeast knockout strain collection. Nucleic Acids Res. 33, e103.PubMedGoogle Scholar
  15. 15.
    Tong, A.H., Evangelista, M., Parsons, A.B., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 294, 2364–2368.PubMedGoogle Scholar
  16. 16.
    Tong, A.H., Lesage, G., Bader, G.D., et al. (2004) Global mapping of the yeast genetic interaction network. Science. 303, 808–813.PubMedGoogle Scholar
  17. 17.
    Ossowski, S., Schwab, R., and Weigel, D. (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–690.PubMedGoogle Scholar
  18. 18.
    Perrimon, N. and Mathey-Prevot, B. (2007) Applications of high-throughput RNA interference screens to problems in cell and developmental biology. Genetics. 175, 7–16.PubMedGoogle Scholar
  19. 19.
    Scherr, M. and Eder, M. (2007) Gene silencing by small regulatory RNAs in mammalian cells. Cell Cycle. 6, 444–449.PubMedGoogle Scholar
  20. 20.
    Boutros, M., Kiger, A.A., Armknecht, S., et al. (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science. 303, 832–835.PubMedGoogle Scholar
  21. 21.
    Ramadan, N., Flockhart, I., Booker, M., Perrimon, N., and Mathey-Prevot, B. (2007) Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nat. Protoc. 2, 2245–2264.PubMedGoogle Scholar
  22. 22.
    Berns, K., Hijmans, E.M., Mullenders, J., et al. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 428, 431–437.PubMedGoogle Scholar
  23. 23.
    Du, G., Yonekubo, J., Zeng, Y., Osisami, M., and Frohman, M.A. (2006) Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J. 273, 5421–5427.PubMedGoogle Scholar
  24. 24.
    Paddison, P.J., Silvam, J.M., Conklin, D.S., et al. (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature. 428, 427–431.PubMedGoogle Scholar
  25. 25.
    Fields, S. and Song, O. (1989) A novel genetic system to detect protein--protein interactions. Nature. 340, 245–246.PubMedGoogle Scholar
  26. 26.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA. 98, 4569–4574.PubMedGoogle Scholar
  27. 27.
    Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of protein--protein interactions in Saccharomyces cerevisiae. Nature. 403, 623–627.PubMedGoogle Scholar
  28. 27a.
    Yu, H., Braun, P., Yildirim, M.A., et al. (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110.Google Scholar
  29. 28.
    Giot, L., Bader, J.S., Brouwer, C., et al. (2003) A protein interaction map of Drosophila melanogaster. Science. 302, 1727–1736.PubMedGoogle Scholar
  30. 29.
    Li, S., Armstrong, C.M., Bertin, N., et al. (2004) A map of the interactome network of the metazoan C. elegans. Science. 303, 540–543.PubMedGoogle Scholar
  31. 30.
    Gandhi, T.K., Zhong, J., Mathivanan, S., et al. (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat. Genet. 38, 285–293.PubMedGoogle Scholar
  32. 31.
    Rual, J.F., Venkatesan, K., Hao, T., et al. (2005) Towards a proteome-scale map of the human protein--protein interaction network. Nature. 437, 1173–1178.PubMedGoogle Scholar
  33. 32.
    Stelzl, U., Worm, U., Lalowski, M., et al. (2005) A human protein--protein interaction network: a resource for annotating the proteome. Cell. 122, 957–968.PubMedGoogle Scholar
  34. 33.
    Rossi, F., Charlton, C.A., and Blau, H.M. (1997) Monitoring protein--protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proc. Natl. Acad. Sci. USA. 94, 8405–8410.PubMedGoogle Scholar
  35. 34.
    Olson, K.R. and Eglen, R.M. (2007) β galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev. Technol. 5, 137–144.PubMedGoogle Scholar
  36. 35.
    Galarneau, A., Primeau, M., Trudeau, L.E., and Michnick, S.W. (2002) β-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622.PubMedGoogle Scholar
  37. 36.
    Cabantous, S., Terwilliger, T.C., and Waldo, G.S. (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23, 102–107.PubMedGoogle Scholar
  38. 37.
    Remy, I. and Michnick, S.W. (1999) Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc. Natl. Acad. Sci. USA. 96, 5394–5399.PubMedGoogle Scholar
  39. 38.
    Remy, I., Campbell-Valois, F.X., and Michnick, S.W. (2007) Detection of protein–protein interactions using a simple survival protein-fragment complementation assay based on the enzyme dihydrofolate reductase. Nat. Protoc. 2, 2120–2125.PubMedGoogle Scholar
  40. 39.
    Fetchko, M. and Stagljar, I. (2004) Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions. Methods. 32, 349–362.PubMedGoogle Scholar
  41. 40.
    Thaminy, S., Miller, J., and Stagljar, I. (2004) The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol. Biol. 261, 297–312.PubMedGoogle Scholar
  42. 41.
    Gavin, A.C., Bosche, M., and Krause, R., et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 415, 141–147.PubMedGoogle Scholar
  43. 42.
    Gavin, A.C., Aloy, P., Grandi, P., et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature. 440, 631–636.PubMedGoogle Scholar
  44. 43.
    Yashiroda, Y., Matsuyama, A., and Yoshida, M. (2008) New insights into chemical biology from ORFeome libraries. Curr. Opin. Chem. Biol. 12, 55–59.PubMedGoogle Scholar
  45. 44.
    Aslanidis, C. and de Jong, P.J. (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074.PubMedGoogle Scholar
  46. 45.
    Dong, Y., Burch-Smith, T.M., Liu, Y., Mamillapalli, P., and Dinesh-Kumar, S.P. (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol. 145, 1161–1170.PubMedGoogle Scholar
  47. 46.
    Nour-Eldin, H.H., Hansen, B.G., Norholm, M.H., Jensen, J.K., and Halkier, B.A. (2006) Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 34, e122.PubMedGoogle Scholar
  48. 47.
    Geu-Flores, F., Nour-Eldin, H.H., Nielsen, M.T., and Halkier, B.A. (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 35, e55.PubMedGoogle Scholar
  49. 48.
    Bitinaite, J., Rubino, M., Varma, K.H., Schildkraut, I., Vaisvila, R., and Vaiskunaite, R. (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res. 35, 1992–2002.PubMedGoogle Scholar
  50. 49.
    Hamann, T. and Møller, B.L. (2007) Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Expr. Purif. 56, 121–127.PubMedGoogle Scholar
  51. 50.
    Nagano, Y., Takao, S., Kudo, T., Iizasa, E., and Anai, T. (2007) Yeast-based recombineering of DNA fragments into plant transformation vectors by one-step transformation. Plant Cell Rep. 26, 2111–2117.PubMedGoogle Scholar
  52. 51.
    Liu, Q.H., Li, M.Z., Leibham, D., Cortez, D., and Elledge, S.J. (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr. Biol. 8, 1300–1309.PubMedGoogle Scholar
  53. 52.
    Benoit, R.M., Wilhelm, R.N., Scherer-Becker, D., and Ostermeier, C. (2006) An improved method for fast, robust, and seamless integration of DNA fragments into multiple plasmids. Protein Expr. Purif. 45, 66–71.PubMedGoogle Scholar
  54. 53.
    Hartley, J.L., Temple, G.F., and Brasch, M.A. (2000) DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788–1795.PubMedGoogle Scholar
  55. 54.
    Cheo, D.L., Titus, S.A., Byrd, D.R., Hartley, J.L., Temple, G.F., and Brasch, M.A. (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res. 14, 2111–2120.PubMedGoogle Scholar
  56. 55.
    Sasaki, Y., Sone, T., Yoshida, S., et al. (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J. Biotechnol. 107, 233–243.PubMedGoogle Scholar
  57. 56.
    Curtis, M.D. and Grossniklaus, U. (2003) A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462–469.PubMedGoogle Scholar
  58. 57.
    Karimi, M., Inzé, D., and Depicker, A. (2002) GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195.PubMedGoogle Scholar
  59. 58.
    Wesley, S.V., Helliwell, C.A., Smith, N.A., et al. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581–590.PubMedGoogle Scholar
  60. 59.
    Earley, K.W., Haag, J.R., Pontes, O., et al. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629.PubMedGoogle Scholar
  61. 60.
    Hilson, P. (2006) Cloned sequence repertoires for small- and large-scale biology. Trends Plant Sci. 11, 133–141.PubMedGoogle Scholar
  62. 61.
    Karimi, M., Bleys, A., Vanderhaeghen, R., and Hilson, P. (2007) Building blocks for plant gene assembly. Plant Physiol. 145, 1183–1191.PubMedGoogle Scholar
  63. 62.
    Karimi, M., De Meyer, B., and Hilson, P. (2005) Modular cloning in plant cells. Trends Plant Sci. 10, 103–105.PubMedGoogle Scholar
  64. 63.
    Wakasa, Y., Yasuda, H., and Takaiwa, F. (2006) High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Plant Biotechnol. J. 4, 499–510.PubMedGoogle Scholar
  65. 64.
    Van Leene, J., Stals, H., Eeckhout, D., et al. (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol. Cell Proteomics. 6, 1226–1138.PubMedGoogle Scholar
  66. 65.
    Seki, M., Narusaka, M., Kamiya, A., et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science. 296, 141–145.PubMedGoogle Scholar
  67. 66.
    Kikuchi, S., Satoh, K., Nagata, T., et al. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science. 301, 376–379.PubMedGoogle Scholar
  68. 67.
    Yamada, K., Lim, J., Dale, J.M., et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 302, 842–846.PubMedGoogle Scholar
  69. 68.
    Nanjo, T., Futamura, N., Nishiguchi, M., Igasaki, T., Shinozaki, K., and Shinohara, K. (2004) Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves. Plant Cell Physiol. 45, 1738–1748.PubMedGoogle Scholar
  70. 69.
    Thao, S., Zhao, Q., Kimball, T., et al. (2004) Results from high-throughput DNA cloning of Arabidopsis thaliana target genes using site-specific recombination. J. Struct. Funct. Genomics. 5, 267–276.PubMedGoogle Scholar
  71. 70.
    Underwood, B.A. Vanderhaeghen, R., Whitford, R., Town, C.D., and Hilson, P. (2006) Simultaneous high-throughput recombinational cloning of open reading frames in closed and open configurations. Plant Biotechnol. J. 4, 317–324.PubMedGoogle Scholar
  72. 71.
    Benhamed, M., Martin-Magniette, M.L., Taconnat, L., et al. Genome scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Submitted.Google Scholar
  73. 72.
    Deplancke, B., Mukhopadhyay, A., Ao, W., et al. (2006) A gene-centered C. elegans protein-DNA interaction network. Cell. 125, 1193–1205.PubMedGoogle Scholar
  74. 73.
    De Sutter, V., Vanderhaeghen, R., Tilleman, S., et al. (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J. 44, 1065–1076.PubMedGoogle Scholar
  75. 74.
    Berger, B., Stracke, R., Yatusevich, R., Weisshaar, B., Flugge, U.I., and Gigolashvili, T. (2007) A simplified method for the analysis of transcription factor-promoter interactions that allows high-throughput data generation. Plant J. 50, 911–916.PubMedGoogle Scholar
  76. 75.
    Paz-Ares, J. and the REGIA Consortium (2002) REGIA, an EU project on functional genomics of transcription factors from Arabidopsis thaliana. Comp. Funct. Genom. 3, 102–108.Google Scholar
  77. 76.
    Gong, W., Shen, Y.P., Ma, L.G., et al. (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol. 135, 773–782.PubMedGoogle Scholar
  78. 77.
    Smith, N.A. Singh, S.P., Wang, M.B., Stoutjesdijk, P.A., Green, A.G., and Waterhouse, P.M. (2000) Total silencing by intron-spliced hairpin RNAs. Nature. 407, 319–320.PubMedGoogle Scholar
  79. 78.
    Helliwell, C. and Waterhouse, P. (2003) Constructs and methods for high-throughput gene silencing in plants. Methods. 30, 289–295.PubMedGoogle Scholar
  80. 79.
    Hilson, P., Allemeersch, J., Altmann, T., et al. (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res. 14, 2176–2189.PubMedGoogle Scholar
  81. 80.
    Alvarez, J.P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., and Eshed, Y. (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell. 18, 1134–1151.PubMedGoogle Scholar
  82. 81.
    Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell. 18, 1121–1133.PubMedGoogle Scholar
  83. 82.
    Robertson, D. (2004) VIGS vectors for gene silencing: many targets, many tools. Annu. Rev. Plant Biol. 55, 495–519.PubMedGoogle Scholar
  84. 83.
    Wielopolska, A., Townley, H., Moore, I., Waterhouse, P., and Helliwell, C. (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol. J. 3, 583–590.PubMedGoogle Scholar
  85. 84.
    Ichikawa, T., Nakazawa, M., Kawashima, M., et al. (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J. 48, 974–985.PubMedGoogle Scholar
  86. 85.
    Weiste, C., Iven, T., Fischer, U., Onate-Sanchez, L., and Droge-Laser, W. (2007) In planta ORFeome analysis by large-scale over-expression of GATEWAY®-compatible cDNA clones: screening of ERF transcription factors involved in abiotic stress defense. Plant J. 52, 382–390.PubMedGoogle Scholar
  87. 86.
    Ogawa, Y., Dansako, T., Yano, K., et al. (2008) Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics. Plant Cell Physiol. 49, 242–250.PubMedGoogle Scholar
  88. 87.
    Seki, M., Carninci, P., Nishiyama, Y., Hayashizaki, Y., and Shinozaki, K. (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J. 15, 707–720.PubMedGoogle Scholar
  89. 88.
    Koroleva, O.A., Tomlinson, M.L., Leader, D., Shaw, P., and Doonan, J.H. (2005) High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J. 41, 162–174.PubMedGoogle Scholar
  90. 89.
    Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136.PubMedGoogle Scholar
  91. 90.
    Lalonde, S., Ehrhardt, D.W., Loque, D., Chen, J., Rhee, S.Y., and Frommer, W.B. (2008) Molecular and cellular approaches for the detection of protein--protein interactions: latest techniques and current limitations. Plant J. 53, 610–635.PubMedGoogle Scholar
  92. 91.
    Miernyk, J.A. and Thelen, J.J. (2008) Biochemical approaches for discovering protein--protein interactions. Plant J. 53, 597–609.PubMedGoogle Scholar
  93. 92.
    de Folter, S., Immink, R.G., Kieffer, M., et al. (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell. 17, 1424–1433.PubMedGoogle Scholar
  94. 93.
    Obrdlik, P., El-Bakkoury, M., Hamacher, T., et al. (2004) K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc. Natl. Acad. Sci. USA. 101, 12242–12247.PubMedGoogle Scholar
  95. 94.
    Chen, H., Zou, Y., Shang, Y., et al. (2008) Firefly luciferase complementation imaging assay for protein--protein interactions in plants. Plant Physiol. 146, 368–376.PubMedGoogle Scholar
  96. 95.
    Hink, M.A., Bisselin, T., and Visser, A.J. (2002) Imaging protein--protein interactions in living cells. Plant Mol. Biol. 50, 871–883.PubMedGoogle Scholar
  97. 96.
    Subramanian, C., Xu, Y., Johnson, C.H., and von Arnim, A.G. (2004) In vivo detection of protein--protein interaction in plant cells using BRET. Methods Mol. Biol. 284, 271–286.PubMedGoogle Scholar
  98. 97.
    Subramanian, C., Woo, J., Cai, X., et al. (2006) A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer (BRET). Plant J. 48, 138–152.PubMedGoogle Scholar
  99. 98.
    Hu, C.D., Chinenov, Y., and Kerppola, T.K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell. 9, 789–798.PubMedGoogle Scholar
  100. 99.
    Bhat, R.A., Lahaye, T., and Panstruga, R. (2006) The visible touch: in planta visualization of protein--protein interactions by fluorophore-based methods. Plant Methods. 2, 12.PubMedGoogle Scholar
  101. 100.
    Hu, C.D., Grinberg, A.V., and Kerppola, T.K. (2006) Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis. Curr. Protoc. Cell Biol. Chapter 21: Unit 21.3.Google Scholar
  102. 101.
    Walter, M., Chaban, C., Schutze, K., et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438.PubMedGoogle Scholar
  103. 102.
    Citovsky, V., Lee, L.Y., Vyas, S., et al. (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362, 1120–1131.PubMedGoogle Scholar
  104. 103.
    Beauchemin, C., Boutet, N., and Laliberte, J.F. (2007) Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of Turnip Mosaic Virus, and the translation eukaryotic initiation factor iso 4E in planta. J. Virol. 81, 775–782.PubMedGoogle Scholar
  105. 104.
    Guo, H.-S., Fei, J.-F., Xie, Q., and Chua, N.-H. (2003) A chemical-regulated inducible RNAi system in plants. Plant J. 34, 383–392.PubMedGoogle Scholar
  106. 105.
    Zhu, H., Bilgin, M., Bangham, R., et al. (2001) Global analysis of protein activities using proteome chips. Science. 293, 2101–2105.PubMedGoogle Scholar
  107. 106.
    Ramachandran, N., Hainsworth, E., Bhullar, B., et al. (2004) Self-assembling protein microarrays. Science. 305, 86–90.PubMedGoogle Scholar
  108. 107.
    LaBaer, J. and Ramachandran, N. (2005) Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9, 14–19.PubMedGoogle Scholar
  109. 108.
    Feilner, T., Hultschig, C., Lee, J., et al. (2005) High-throughput identification of potential Arabidopsis MAP kinases substrates. Mol. Cell Proteomics. 4, 1558–1168.PubMedGoogle Scholar
  110. 109.
    Feilner, T. and Kersten, B. (2007) Phosphorylation studies using plant protein microarrays. Methods Mol. Biol. 355, 379–390.PubMedGoogle Scholar
  111. 110.
    Kersten, B. and Feilner, T. (2007) Generation of plant protein microarrays and investigation of antigen--antibody interactions. Methods Mol. Biol. 355, 365–378.PubMedGoogle Scholar
  112. 111.
    Popescu, S.C., Popescu, G.V., Bachan, S., et al. (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc. Natl. Acad. Sci. USA. 104, 4730–4755.PubMedGoogle Scholar
  113. 112.
    Himmelbach, A., Zierold, U., Hensel, G., et al. (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol. 145, 1192–1200.PubMedGoogle Scholar
  114. 113.
    Joubès, J., De Schutter, K., Verkest, A, Inzé, D., and De Veylder, L. (2004) Conditional, recombinase-mediated expression of genes in plant cell cultures. Plant J. 37, 889–896.PubMedGoogle Scholar
  115. 114.
    Brand, L., Horler, M., Nuesch, E., et al. (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol. 141, 1194–1204.PubMedGoogle Scholar
  116. 115.
    Brown, A.P., Affleck, V., Fawcett, T., and Slabas, A.R. (2006) Tandem affinity purification tagging of fatty acid biosynthetic enzymes in Synechocystis sp PCC6803 and Arabidopsis thaliana. J. Exp. Bot. 57, 1563–1571.PubMedGoogle Scholar
  117. 116.
    Rohila, J.S., Chen, M., Chen, S., et al. (2006) Protein--protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J. 46, 1–13.PubMedGoogle Scholar
  118. 117.
    Liu, Y.L., Schiff, M., and Dinesh-Kumar, S.P. (2002) Virus-induced gene silencing in tomato. Plant J. 31, 777–786.PubMedGoogle Scholar
  119. 118.
    Marjanac, G., De Paepe, A., Peck, I., Jacobs, A., De Buck, S., and Depicker, A. (2008) Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res. 17, 239–250.PubMedGoogle Scholar
  120. 119.
    Tzfira, T., Tian, G.W., Lacroix, B., et al. (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503–516.PubMedGoogle Scholar
  121. 120.
    Ehlert, A., Weltmeier, F., Wang, X., et al. (2006) Two-hybrid protein--protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J. 46, 890–900.PubMedGoogle Scholar
  122. 121.
    Xiao, Y.L., Malik, M., Whitelaw, C.A., and Town, C.D. (2002) Cloning and sequencing of cDNAs for hypothetical genes from chromosome 2 of Arabidopsis. Plant Physiol. 130, 2118–2128.PubMedGoogle Scholar
  123. 122.
    Xiao, Y.L., Smith, S.R., Ishmael, N., et al. (2005) Analysis of the cDNAs of hypothetical genes on Arabidopsis chromosome 2 reveals numerous transcript variants. Plant Physiol. 139, 1323–1337.PubMedGoogle Scholar
  124. 123.
    Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137, 13–30.PubMedGoogle Scholar
  125. 124.
    Castelli, V., Aury, J.-M., Jaillon, O., et al. (2004) Whole genome sequence comparisons and “full-length” cDNA sequences: a combined approach to evaluate and improve Arabidopsis genome annotation. Genome Res. 14, 406–413.PubMedGoogle Scholar
  126. 125.
    Thareau, V., Déhais, P., Serizet, C., Hilson, P., Rouzé, P., and Aubourg, S. (2003) Automatic design of gene-specific sequence tags for genome-wide functional studies. Bioinformatics. 19, 2191–2198.PubMedGoogle Scholar
  127. 126.
    Sclep, G., Allemeersch, J., Liechti, R., et al. (2007) CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes. BMC Bioinformatics. 8, 400.PubMedGoogle Scholar
  128. 127.
    Kerschen, A., Napoli, C.A., Jorgensen, R.A., and Muller, A.E. (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett. 566, 223–228.PubMedGoogle Scholar
  129. 128.
    McGinnis, K., Chandler, V., Cone, K., et al. (2005) Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol. 392, 1–24.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Annick Bleys
    • 1
    • 2
  • Mansour Karimi
    • 1
    • 2
  • Pierre Hilson
    • 1
    • 2
  1. 1.Department of Plant Systems BiologyFlanders Institute for Biotechnology (VIB)GentBelgium
  2. 2.Department of Molecular GeneticsGhent UniversityGentBelgium

Personalised recommendations