Quakenbush, J. (2001) Computational analysis of microarray data. Nat. Rev. Genet.
2, 418–427.
CrossRef
Google Scholar
Stears, R.L., Martinsky, T., and Schena, M. (2003) Trends in microarray analysis. Nat. Med.
9, 140–145.
PubMed
CrossRef
CAS
Google Scholar
The Arabidopsis Functional Genomics Network (AFGN). Web site: http://www.uni-tuebingen.de/plantphys/AFGN/atgenex.htm.
Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., and Lohmann, J.U. (2005) A gene expression map of Arabidopsis thalianadevelopment. Nat. Genet.
37, 501–506.
PubMed
CrossRef
CAS
Google Scholar
Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D’Angelo, C., Bornberg-Bauer, E., Kudla, J., and Harter, K. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J.
50, 347–363.
PubMed
CrossRef
CAS
Google Scholar
Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., Ogawa, M., Yamauchi, Y., Preston, J., Aoki, K., Kiba, T., Takatsuto, S., Fujioka, S., Asami, T., Nakano, T., Kato, H., Mizuno, T., Sakakibara, H., Yamaguchi, S., Nambara, E., Kamiya, Y., Takahashi, H., Hirai, M.Y., Sakurai, T., Shinozaki, K., Saito, K., Yoshida, S., and Shimada, Y. (2008) The AtGenExpress hormone- and chemical-treatment data set: experimental design, data evaluation, model data analysis, and data access. Plant J.E-pub (ahead of print).
Google Scholar
Swiss Federal Institute of Technology Zurich. Genevestigator. Web site: https://www.genevestigator.ethz.ch/.
Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004) GENEVESTIGATOR: Arabidopsismicroarray database and analysis toolbox. Plant Phys.
136, 2621–2632.
CrossRef
CAS
Google Scholar
Zimmermann, P., Hennig, L., and Gruissem, W. (2005) Gene expression analysis and network discovery using Genevestigator. Trends Plant Sci.
9, 407–409.
CrossRef
Google Scholar
Wohlbach, D.J., Quirino, B.F., and Sussman, M.R. (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell.E-pub (ahead of print).
Google Scholar
Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics.
19, 185–193.
PubMed
CrossRef
CAS
Google Scholar
Irizarry, R.A., Bolstad, B.M., Collin, F., Cope, L.M., Hobbs, B., and Speed, T.P. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res.
31, e15.
PubMed
CrossRef
Google Scholar
Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., and Speed, T.P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics.
4, 249–264.
PubMed
CrossRef
Google Scholar
Bioconductor. Web site: http://bioconductor.org/.
Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science.
312(5771), 212–217.
PubMed
CrossRef
CAS
Google Scholar
Sadygov, R.G., Cociorva, D., and Yates, J.R. III (2004) Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat. Methods.
1(3), 195–202.
PubMed
CrossRef
CAS
Google Scholar
Steen, H. and Mann, M. (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat. Rev. Mol. Cell Biol. 5(9), 699–711.
PubMed
CrossRef
CAS
Google Scholar
Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.
17(10), 994–999.
PubMed
CrossRef
CAS
Google Scholar
Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D.J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiaeusing amine-reactive isobaric tagging reagents. Mol. Cell Proteomics.
3, 1154–1169.
PubMed
CrossRef
CAS
Google Scholar
Yao, X., Freas, A., Ramirez, J., Demirev, P.A., and Fenslau, C. (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem.
73, 2836–2842.
PubMed
CrossRef
CAS
Google Scholar
Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics.
1, 376–386.
PubMed
CrossRef
CAS
Google Scholar
Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C.P., Plasterk, R.H.A., and Heck, A.J.R. (2003) Metabolic labeling of C. elegansand D. melanogasterfor quantitative proteomics. Nat. Biotechnol.
21, 927–931.
PubMed
CrossRef
CAS
Google Scholar
Thelen, J.J. and Peck, S.C. (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell.
19(11), 3339–3346.
PubMed
CrossRef
CAS
Google Scholar
Graumann, J., Hubner, N.C., Kim, J.B., Ko, K., Moser, M., Kumar, C., Cox, J., Scholer, H., and Mann, M. (2008) Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol. Cell Proteomics.
7(4), 672–683.
PubMed
CAS
Google Scholar
Baerenfaller, K., Grossmann, J., Grobei, M.A., Hull, R., Hirsch-Hoffmann, M., Yalovsky, S., Zimmermann, P., Grossniklaus, U., Gruissem, W., and Baginsky, S. (2008) Genome scale proteomics reveals Arabidopsis thalianagene models and proteome dynamics. Science.
320, 938–941.
PubMed
CrossRef
CAS
Google Scholar
Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol.
19(3), 1720–1730.
PubMed
CAS
Google Scholar
Gingras, A.C., Gstaiger, M., Raught, B., and Aebersold, R. (2007) Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol.
8(8), 645–654.
PubMed
CrossRef
CAS
Google Scholar
Cravatt, B.F., Simon, G.M., and Yates, J.R. III (2007) The biological impact of mass-spectrometry-based proteomics. Nature.
450(7172), 991–1000.
PubMed
CrossRef
CAS
Google Scholar
Blagoev, B., Kratchmarova, I., Ong, S.E., Nielsen, M., Foster, L.J., and Mann, M. (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signalling. Nat. Biotechnol.
21(3), 315–318.
PubMed
CrossRef
CAS
Google Scholar
Pflieger, D., Junger, M.A., Muller, M., Rinner, O., Lee, H., Gehrig, P.M., Gstaiger, M., and Aebersold, R. (2008) Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol. Cell Proteomics.
7(2), 326–346.
PubMed
CAS
Google Scholar
Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature.
435(7041), 441–445.
PubMed
CrossRef
CAS
Google Scholar
Kepinski, S. and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature.
435(7041), 446–451.
PubMed
CrossRef
CAS
Google Scholar
Doherty, M.K. and Beynon, R.J. (2006) Protein turnover on the scale of the proteome. Expert Rev. Proteomics.
3(1), 97–110.
PubMed
CrossRef
CAS
Google Scholar
Pratt, J.M., Petty, J., Riba-Garcia, I., Robertson, D.H., Gaskell, S.J., Oliver, S.G., and Beynon, R.J. (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell Proteomics.
1(8), 579–591.
PubMed
CrossRef
CAS
Google Scholar
Rao, P.K., Roxas, B.A.P., and Li, Q. (2008) Determination of global protein turnover in stressed mycobacterium cells using hybrid-linear ion trap-fourier transform mass spectrometry. Anal. Chem.
80, 396–406.
PubMed
CrossRef
CAS
Google Scholar
Doherty, M.K., Whitehead, C., McCormack, H., Gaskell, S.J., and Beynon, R.J. (2005) Proteome dynamics in complex organisms: using stable isotopes to monitor individual protein turnover rates. Proteomics.
5(2), 522–533.
PubMed
CrossRef
CAS
Google Scholar
Gruhler, A., Schulze, W.X., Matthiesen, R., Mann, M., and Jensen, O.N. (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol. Cell Proteomics.
4(11), 952–964.
Google Scholar
Kim, J.K., Harada, K., Bamba, T., Fukusaki, E.-I., and Bobayashi, A. (2005) Stable isotope dilution-based accurate comparative quantification of nitrogen-containing metabolites in Arabidopsis thalianaT87 cells using in vivo 15N-isotope enrichment. Biosci. Biotechnol. Biochem.
69(7), 1331–1340.
PubMed
CrossRef
CAS
Google Scholar
Harada, K., Fukusaki, E., Bamba, T., Sato, F., and Kobayashi, A. (2006) In vivo 15N-enrichment of metabolites in suspension cultured cells and its application to metabolomics. Biotechnol. Prog.
22(4), 1003–1011.
PubMed
CrossRef
CAS
Google Scholar
Engelsberger, W.R., Erban, A., Kopka, J., and Schulze, W.X. (2006) Metabolic labeling of plant cell cultures with K15NO3as a tool for quantitative analysis of proteins and metabolites. Plant Methods.
2, 14–25.
PubMed
CrossRef
Google Scholar
Lanquar, V., Kuhn, L., Lelievre, F., Khafif, M., Espagne, C., Bruley, C., Barbier-Brygoo, H., Garin, J., and Thomine, S. (2007) 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics.
7(5), 750–754.
PubMed
CrossRef
CAS
Google Scholar
Ippel, J.H., Pouvreau, L., Kroef, T., Gruppen, H., Versteeg, G., van den Putten, P., Struik, P.C., and van Mierlo, C.P. (2004) In vivo uniform 15N-isotope labelling of plants: using the greenhouse for structural proteomics. Proteomics.
4(1), 226–234.
PubMed
CrossRef
CAS
Google Scholar
Nelson, C.J., Huttlin, E.L., Hegeman, A.D., Harms, A.C., and Sussman, M.R. (2007) Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics.
7(8), 1279–1292.
PubMed
CrossRef
CAS
Google Scholar
Huttlin, E.L., Hegeman, A.D., Harms, A.C., and Sussman, M.R. (2007) Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol. Cell Proteomics.
6(5), 860–881.
PubMed
CrossRef
CAS
Google Scholar
Hebeler, R., Oekjeklaus, S., Reidegeld, K.A., Eisenacher, M., Staphan, C., Sitek, B., Stuhler, K., Meyer, H.E., Sturre, M.J., Dijkwel, P.P., and Warscheid, B. (2008) Study of early leaf senescence in Arabidopsis thalianaby quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol. Cell
Proteomics.
7(1), 108–120.
PubMed
CAS
Google Scholar
Maor, R., Jones, A., Nuhse, T.S., Studholme, D.H., Peck, S.C., and Shirasu, K. (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol. Cell Proteomics.
6(4), 601–610.
PubMed
CrossRef
CAS
Google Scholar
Fitchette, A.C., Dinh, O.T., Faye, L., and Bardor, M. (2007) Plant proteomics and glycosylation. Methods Mol. Biol.
355, 317–342.
PubMed
CAS
Google Scholar
Peck, S.C. (2006) Phosphoproteomics in Arabidopsis: moving from empirical to predictive science. J. Exp. Bot.
57(7), 1523–1527.
PubMed
CrossRef
CAS
Google Scholar
Ding, S.J., Qian, W.J., and Smith, R.D. (2007) Quantitative proteomics approaches for studying phosphotyrosine signaling. Expert Rev. Proteomics.
4(1), 13–23.
PubMed
CrossRef
CAS
Google Scholar
Vener, A.V., Harms, A., Sussman, M.R., and Vierstra, R.D. (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J. Biol. Chem.
276(10), 6959–6966.
PubMed
CrossRef
CAS
Google Scholar
Ficarro, S.B., McCleland, M.L., Stukenberg, P.T., Burke, D.J., Ross, M.M., Shabanowitz, J., Hunt, D.F., and White, F.M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.
20, 301–305.
PubMed
CrossRef
CAS
Google Scholar
Nuhse, T.S., Stensballe, A., Jensen, O.N., and Peck, S.C. (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol. Cell Proteomics.
2(12), 1261–1270.
PubMed
CrossRef
Google Scholar
Nuhse, T., Yu, K., and Salomon, A. (2007) Isolation of phosphopeptides by immobilized metal ion affinity chromatography. Curr. Protoc. Mol. Biol.
18, 18.13.
Google Scholar
Pinkse, M.W., Uitto, P.M., Hilhorst, M.J., Ooms, B., and Heck, A.J. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nano-LC-ESI_MS/MS and titanium oxide precolumns. Anal. Chem.
96(14), 3935–3943.
CrossRef
Google Scholar
Beausoleil, S.A., Hedrychowski, M., Schwartz, D., Elias, J.E., Villen, J., Li, J., Cohn, M.A., Cantley, L.C., and Gygi, S.P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Nat. Acad. Sci. USA.
101(33), 12130–12135.
Google Scholar
Gruhler, A., Olsen, J.V., Mohammed, S., Mortensen, P., Faergeman, N.J., Mann, M., and Jensen, O.N. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteomics.
4(3), 310–327.
PubMed
CrossRef
CAS
Google Scholar
Kelleher, N.L., Zubarev, R.A., Bush, K., Furie, B., Furie, B.C., McLafferty, F.W., and Walsh, C.T. (1999) Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal. Chem.
71(19), 4250–4253.
PubMed
CrossRef
CAS
Google Scholar
Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., and McLafferty, F.W. (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem.
72(3), 563–573.
PubMed
CrossRef
CAS
Google Scholar
Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., and Hunt, D.F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA.
101(26), 9528–9533.
Google Scholar
Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Nat. Acad. Sci. USA.
100(12), 6940–6945.
PubMed
CrossRef
CAS
Google Scholar
Hegeman, A.D., Harms, A.C., Sussman, M.R., Bunner, A.E., and Harper, J.F. (2004) An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J. Am. Soc. Mass Spectrom.
15(5), 647–653.
PubMed
CrossRef
CAS
Google Scholar
Dunn, W.B., Bailey, N.J.C., and Johnson, H.E. (2005) Measuring the metabolome: current analytical technologies. Analyst.
130, 606–625.
PubMed
CrossRef
CAS
Google Scholar
Marshall, E. (2007) Metabolic Research: Canadian group claims “unique” database. Science.
315, 583–584.
PubMed
CrossRef
CAS
Google Scholar
Fiehn, O., Kloska, S., and Altmann, T. (2001) Integrated studies on plant biology using multiparallel techniques. Curr. Opin. Biotechnol.
12(1), 82–86.
PubMed
CrossRef
CAS
Google Scholar
Kimball, E. and Rabinowitz, J.D. (2006) Identifying decomposition products in extracts of cellular metabolites. Anal. Biochem.
358(2), 273–280.
PubMed
CrossRef
CAS
Google Scholar
Want, E.J., O’Maille, G., Smith, C.A., Brandon, T.R., Uritboonthai, W., Qin, C., Trauger, S.A., and Siuzdak, G. (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem.
78(3), 743–752.
PubMed
CrossRef
CAS
Google Scholar
Rabinowitz, J.D. and Kimball, E. (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem.
79(16), 6167–6173.
PubMed
CrossRef
CAS
Google Scholar
Lewis, I.A., Schommer, S.C., Hodis, B., Robb, K.A., Tonelli, M., Westler, W.M., Sussman, M.R., and Markley, J.L. (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal. Chem.
79(24), 9385–9390.
PubMed
CrossRef
CAS
Google Scholar
Want, E.J., Nordstrom, A., Morita, H., and Suizdak, G. (2007) From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J. Proteome Res.
6(2), 459–468.
PubMed
CrossRef
CAS
Google Scholar
Bajad, S.U., Lu, W., Kimball, E.H., Yuan, J., Peterson, C., and Rabinowitz, J.D. (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr.
1125(1), 76–88.
CrossRef
CAS
Google Scholar
Nordstrom, A., Want, E., Northen, T., Lehtio, J., and Siuzdak, G. (2008) Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem.
80(2), 421–429.
PubMed
CrossRef
Google Scholar
Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., and Suizdak, G.(2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.
78(3), 779–787.
PubMed
CrossRef
CAS
Google Scholar
NIST Website: http://www.nist.gov/srd/nist1.htm.
Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P., Weckwerth, W., Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A.R., and Steinhauser, D. (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics.
21(8), 1635–1638.
PubMed
CrossRef
CAS
Google Scholar
Smith, C.A., O’Maille, G., Want, E.J., Qin, C., Trauger, S.A., Brandon, T.R., Custodio, D.E., Abagyan, R., and Siuzdak, G. (2005) METLIN: a metabolite mass spectra database. Ther. Drug Monit.
27(6), 747–751.
PubMed
CrossRef
CAS
Google Scholar
Wishart, D.S., Tzur, D., Knox, C., Eisner, R., Guo, A.C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M.-A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D.D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G.E., MacInnis, G.D., Weljie, A.M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B.D., Vogel, H.J., and Querengesser, L. (2007) HMDB: the human metabolome database. Nucleic Acids Res.
35, D521–D526.
PubMed
CrossRef
CAS
Google Scholar
Cui, Q., Lewis, I.A., Hegeman, A.D., Anderson, M.E., Li, J., Schulte, C.F., Westler, W.M., Eghbalnia, H.R., Sussman, M.R., and Markley, J.R. (2008) Metabolite identification via the Madison metabolomics consortium database. Nat. Biotechnol.
26(2), 162–164.
PubMed
CrossRef
CAS
Google Scholar
Kind, T. and Fiehn, O. (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics.
27(8), 105.
CrossRef
Google Scholar
Hegeman, A.D., Schulte, C.F., Cui, Q., Lewis, I.A., Huttlin, E.L., Eghbalnia, H., Harms, A.C., Ulrich, E.L., Markley, J.L., and Sussman, M.R. (2007) Stable isotope assisted assignment of elemental compositions for metabolomics. Anal. Chem.
79(18), 6912–6921.
PubMed
CrossRef
CAS
Google Scholar
Weckwerth, W., Wenzel, K., and Fiehn, O. (2004) Process for the integrated extraction, identification, and quantification of metabolites, proteins, and RNA to reveal their co-regulation in biochemical networks. Proteomics.
4, 78–83.
PubMed
CrossRef
CAS
Google Scholar
Frey, I.M., Rubio-Aliaga, I., Siewert, A., Sailer, D., Drobyshev, A., Beckers, J., de Angelis, M.H., Aubert, J., Hen, A.B., Fiehn, O., Eichinger, H.M., and Daniel, H. (2007) Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tiddue of Pept2-/- mice. Physiol. Genomics.
28, 301–310.
PubMed
CAS
Google Scholar
Trauger, S.A., Kalizak, E., Kalisiak, J., Morita, H., Weinberg, M.V., Menon, A.L., Poole, F.L. II, Adams, M.W.W., and Siuzdak, G. (2008) Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J. Proteome Res.
7, 1027–1035.
PubMed
CrossRef
CAS
Google Scholar
Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., and Fernie, A.R. (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotech.
24, 447–454.
CrossRef
CAS
Google Scholar
Lu, Y., Savage, L.J., Ajjawi, I., Imre, K.M., Yoder, D.W., Benning, C., DellaPenna, D., Ohlrogge, J.B., Osteryoung, K.W., Weber, A.P., Wilkerson, C.G., and Last, R.L. (2008) New connections across pathways and cellular processes: industrialized mutant screening reveals novel associations between diverse phenotypes in Arabidopsis. Plant Physiol.
146, 1482–1500.
PubMed
CrossRef
CAS
Google Scholar
Wienkoop, S., Morgenthal, K., Wolschin, F., Scholz, M., Selbig, J., and Weckwerth, W. (2008) Integration of metabolomic and proteomic phenotypes – analysis of data-covariance dissects starch and RFO metabolism from low and high temperature response in Arabidopsis thaliana. Mol. Cell Proteomics.
7, 1725–1736.
PubMed
CrossRef
CAS
Google Scholar