siRNA and miRNA Gene Silencing pp 1-24

Part of the Methods in Molecular Biology book series (MIMB, volume 487)

Targeting Stromal-cancer Cell Interactions with siRNAs

  • Seyedhossein Aharinejad
  • Mouldy Sioud
  • Trevor Lucas
  • Dietmar Abraham
Protocol

Abstract

Tumors are composed of both malignant and normal cells, including fibroblasts, endothelial cells, mesenchymal stem cells, and inflammatory immune cells such as macrophages. These various stromal components interact with cancer cells to promote growth and metastasis. For example, macrophages, attracted by colony-stimulating factor-1 (CSF-1) produced by tumor cells, in turn produce various growth factors such as vascular endothelial growth factor, which supports the growth of tumor cells and their interaction with blood vessels leading to enhanced tumor cell spreading. The activation of autocrine and paracrine oncogenic signaling pathways by stroma-derived growth factors and cytokines has been implicated in promoting tumor cell proliferation and metastasis. Furthermore, matrix metalloproteinases (MMPs) derived from both tumor cells and the stromal compartment are regarded as major players assisting tumor cells during metastasis. Collectively, these recent findings indicate that targeting tumor–stroma interactions is a promising strategy in the search for novel treatment modalities in human cancer. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with small interfering RNAs.

Keywords

Stroma matrix metalloproteinases extracellular matrix colony-stimulating factor vascular endothelial growth factor tumor macrophages angiogenesis metastasis RNA interference small interfering RNAs 

References

  1. 1.
    Farber, E. (1984) The multistep nature of cancer development. Cancer Res, 44, 4217–4223.PubMedGoogle Scholar
  2. 2.
    Weinberg, R.A. (1989) Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res, 49, 3713–3721.PubMedGoogle Scholar
  3. 3.
    Stetler-Stevenson, W.G., Yu, A.E. (2001) Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol, 11, 143–152.PubMedCrossRefGoogle Scholar
  4. 4.
    Fidler, I.J. (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer, 3, 453–458.PubMedCrossRefGoogle Scholar
  5. 5.
    Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1, 27–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Folkman, J. (1995) Angiogenesis inhibitors generated by tumors. Mol Med, 1, 120–122.PubMedGoogle Scholar
  7. 7.
    Liotta, L.A., Kohn, E.C. (2001) The microenvironment of the tumour-host interface. Nature, 411, 375–379.PubMedCrossRefGoogle Scholar
  8. 8.
    Folkman, J., Watson, K., Ingber, D., Hanahan, D. (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339, 58–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S., Ruco, L. (1992) The origin and function of tumor-associated macrophages. Immunol Today, 13, 265–270.PubMedCrossRefGoogle Scholar
  10. 10.
    Weidner, N., Semple, J.P., Welch, W.R., Folkman, J. (1991) Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med, 324, 1–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Weidner, N., Carroll, P.R., Flax, J., Blumenfeld, W., Folkman, J. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol, 143, 401–409.PubMedGoogle Scholar
  12. 12.
    Polverini, P.J., Cotran, P.S., Gimbrone, M.A., Jr., and Unanue, E.R. (1977) Activated macrophages induce vascular proliferation. Nature, 269, 804–806.PubMedCrossRefGoogle Scholar
  13. 13.
    Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R., Sorg, C. (1994) Macrophages and angiogenesis. J Leukoc Biol, 55, 410–422.PubMedGoogle Scholar
  14. 14.
    Lin, E.Y., Nguyen, A.V., Russell, R.G., Pollard, J.W. (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med, 193, 727–740.PubMedCrossRefGoogle Scholar
  15. 15.
    Coussens, L.M., Werb, Z. (1996) Matrix metalloproteinases and the development of cancer. Chem Biol, 3, 895–904.PubMedCrossRefGoogle Scholar
  16. 16.
    Baglole, C.J., Ray, D.M., Bernstein, S.H., Feldon, S.E., Smith, T.J., Sime, P.J., Phipps, R.P. (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest, 35, 297–325.PubMedCrossRefGoogle Scholar
  17. 17.
    Mueller, M.M., Fusenig, N.E. (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer, 4, 839–849.PubMedCrossRefGoogle Scholar
  18. 18.
    Gabbiani, G. (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol, 200, 500–503.PubMedCrossRefGoogle Scholar
  19. 19.
    Chang, H.Y., Chi, J.T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., Brown, P.O. (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A, 99, 12877–12882.PubMedCrossRefGoogle Scholar
  20. 20.
    Kalluri, R., Zeisberg, M. (2006) Fibroblasts in cancer. Nat Rev Cancer, 6, 392–401.PubMedCrossRefGoogle Scholar
  21. 21.
    Dimanche-Boitrel, M.T., Vakaet, L., Jr., Pujuguet, P., Chauffert, B., Martin, M.S., Hammann, A., Van Roy, F., Mareel, M., Martin, F. (1994) In vivo and in vitro invasiveness of a rat colon-cancer cell line maintaining E-cadherin expression: an enhancing role of tumor-associated myofibroblasts. Int J Cancer, 56, 512–521.PubMedCrossRefGoogle Scholar
  22. 22.
    Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G., Moses, H.L. (2004a) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 848–851.CrossRefGoogle Scholar
  23. 23.
    Orimo, A., Gupta, P.B., Sgroi, D.C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V.J., Richardson, A.L., Weinberg, R.A. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.PubMedCrossRefGoogle Scholar
  24. 24.
    Scott, A.M., Wiseman, G., Welt, S., Adjei, A., Lee, F.T., Hopkins, W., Divgi, C.R., Hanson, L.H., Mitchell, P., Gansen, D.N., Larson, S.M., Ingle, J.N., Hoffman, E.W., Tanswell, P., Ritter, G., Cohen, L.S., Bette, P., Arvay, L., Amelsberg, A., Vlock, D., Rettig, W.J., Old, L.J. (2003) A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res, 9, 1639–1647.PubMedGoogle Scholar
  25. 25.
    Bhowmick, N.A., Neilson, E.G., Moses, H.L. (2004) Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332–337.PubMedCrossRefGoogle Scholar
  26. 26.
    Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E.C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R.K., Seed, B. (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell, 94, 715–725.PubMedCrossRefGoogle Scholar
  27. 27.
    Carmeliet, P. (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med, 6, 389–395.PubMedCrossRefGoogle Scholar
  28. 28.
    Goon, P.K., Lip, G.Y., Boos, C.J., Stonelake, P.S., Blann, A.D. (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia, 8, 79–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N.R., Crystal, R.G., Moore, M.A., Hajjar, K.A., Manova, K., Benezra, R., Rafii, S. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med, 7, 1194–1201.PubMedCrossRefGoogle Scholar
  30. 30.
    Rafii, S., Meeus, S., Dias, S., Hattori, K., Heissig, B., Shmelkov, S., Rafii, D., Lyden, D. (2002) Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol, 13, 61–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamaguchi, J., Kusano, K.F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., Bosch-Marce, M., Masuda, H., Losordo, D.W., Isner, J.M., Asahara, T. (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.PubMedCrossRefGoogle Scholar
  32. 32.
    Aghi, M., Cohen, K.S., Klein, R.J., Scadden, D.T., Chiocca, E.A. (2006) Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res, 66, 9054–9064.PubMedCrossRefGoogle Scholar
  33. 33.
    Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T., Stanley, E.R. (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell, 41, 665–676.PubMedCrossRefGoogle Scholar
  34. 34.
    Lopez, M., Martinache, C., Canepa, S., Chokri, M., Scotto, F., Bartholeyns, J. (1993) Autologous lymphocytes prevent the death of monocytes in culture and promote, as do GM-CSF, IL-3 and M-CSF, their differentiation into macrophages. J Immunol Methods, 159, 29–38.PubMedCrossRefGoogle Scholar
  35. 35.
    Stanley, E.R. (2000) CSF-1. In Oppenheim, J., Feldmann, M. (eds.), Cytokine Reference: A Compendium of Cytokines and other Mediators of Host Defence. Academic press, London, pp. 911–934.Google Scholar
  36. 36.
    James, S.L., Cook, K.W., Lazdins, J.K. (1990) Activation of human monocyte-derived macrophages to kill schistosomula of Schistosoma mansoni. in vitro J Immunol, 145, 2686–2690.PubMedGoogle Scholar
  37. 37.
    Eubank, T.D., Galloway, M., Montague, C.M., Waldman, W.J., Marsh, C.B. (2003) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol, 171, 2637–2643.PubMedGoogle Scholar
  38. 38.
    Roth, P., Stanley, E.R. (1992) The biology of CSF-1 and its receptor. Curr Top Microbiol Immunol, 181, 141–167.PubMedCrossRefGoogle Scholar
  39. 39.
    Yeung, Y.G., Stanley, E.R. (2003) Proteomic Approaches to the Analysis of Early Events in Colony-stimulating Factor-1 Signal Transduction. Mol Cell Proteomics, 2, 1143–1155.PubMedCrossRefGoogle Scholar
  40. 40.
    Pixley, F.J., Stanley, E.R. (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol, 14, 628–638.PubMedCrossRefGoogle Scholar
  41. 41.
    Lin, E.Y., Gouon-Evans, V., Nguyen, A.V., Pollard, J.W. (2002) The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia, 7, 147–162.PubMedCrossRefGoogle Scholar
  42. 42.
    Bast, R.C., Jr., Boyer, C.M., Jacobs, I., Xu, F.J., Wu, S., Wiener, J., Kohler, M., Berchuck, A. (1993) Cell growth regulation in epithelial ovarian cancer. Cancer, 71, 1597–1601.PubMedCrossRefGoogle Scholar
  43. 43.
    Baiocchi, G., Kavanagh, J.J., Talpaz, M., Wharton, J.T., Gutterman, J.U., Kurzrock, R. (1991) Expression of the macrophage colony-stimulating factor and its receptor in gynecologic malignancies. Cancer, 67, 990–996.PubMedCrossRefGoogle Scholar
  44. 44.
    Lidor, Y.J., Xu, F.J., Martinez-Maza, O., Olt, G.J., Marks, J.R., Berchuck, A., Ramakrishnan, S., Berek, J.S., Bast, R.C., Jr. (1993) Constitutive production of macrophage colony-stimulating factor and interleukin-6 by human ovarian surface epithelial cells. Exp Cell Res, 207, 332–339.PubMedCrossRefGoogle Scholar
  45. 45.
    Kacinski, B.M., Chambers, S.K., Stanley, E.R., Carter, D., Tseng, P., Scata, K.A., Chang, D.H., Pirro, M.H., Nguyen, J.T., Ariza, A. et al. (1990) The cytokine CSF-1 (M-CSF) expressed by endometrial carcinomas in vivo and in vitro, may also be a circulating tumor marker of neoplastic disease activity in endometrial carcinoma patients. Int J Radiat Oncol Biol Phys, 19, 619–626.PubMedCrossRefGoogle Scholar
  46. 46.
    Suzuki, M., Ohwada, M., Aida, I., Tamada, T., Hanamura, T. Nagatomo, M. (1993) Macrophage colony-stimulating factor as a tumor marker for epithelial ovarian cancer. Obstet Gynecol, 82, 946–950.PubMedCrossRefGoogle Scholar
  47. 47.
    Suzuki, M., Kobayashi, H., Ohwada, M., Terao, T., Sato, I. (1998) Macrophage colony-stimulating factor as a marker for malignant germ cell tumors of the ovary. Gynecol Oncol, 68, 35–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L.D. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature, 345, 442–444.PubMedCrossRefGoogle Scholar
  49. 49.
    Nowicki, A., Szenajch, J., Ostrowska, G., Wojtowicz, A., Wojtowicz, K., Kruszewski, A.A., Maruszynski, M., Aukerman, S.L., Wiktor-Jedrzejczak, W. (1996) Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int J Cancer, 65, 112–119.PubMedCrossRefGoogle Scholar
  50. 50.
    Pei, X.H., Nakanishi, Y., Takayama, K., Bai, F., Hara, N. (1999) Granulocyte, granulocyte-macrophage, and macrophage colony-stimulating factors can stimulate the invasive capacity of human lung cancer cells. Br J Cancer, 79, 40–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Stanley, E. (1992) Colony-Stimulating Factor-1. In Aggarwal, B. Gutterman, J. (eds.), Human Cytokines. Blackwell, Boston, pp. 196–220.Google Scholar
  52. 52.
    Aharinejad, S., Paulus, P., Sioud, M., Hofmann, M., Zins, K., Schafer, R., Stanley, E.R., Abraham, D. (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res, 64, 5378–5384.PubMedCrossRefGoogle Scholar
  53. 53.
    Russo, J., Russo, I.H. (2001) The pathway of neoplastic transformation of human breast epithelial cells. Radiat Res, 155, 151–154.PubMedCrossRefGoogle Scholar
  54. 54.
    Aharinejad, S., Abraham, D., Paulus, P., Abri, H., Hofmann, M., Grossschmidt, K., Schafer, R., Stanley, E.R., Hofbauer, R. (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res, 62, 5317–5324.PubMedGoogle Scholar
  55. 55.
    Cox, G.W., Melillo, G., Chattopadhyay, U., Mullet, D., Fertel, R.H., Varesio, L. (1992) Tumor necrosis factor-alpha-dependent production of reactive nitrogen intermediates mediates IFN-gamma plus IL-2-induced murine macrophage tumoricidal activity. J Immunol, 149, 3290–3296.PubMedGoogle Scholar
  56. 56.
    Lejeune, F.J., Ruegg, C., Lienard, D. (1998) Clinical applications of TNF-alpha in cancer. Curr Opin Immunol, 10, 573–580.PubMedCrossRefGoogle Scholar
  57. 57.
    Balkwill, F. (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev, 13, 135–141.PubMedCrossRefGoogle Scholar
  58. 58.
    Saren, P., Welgus, H.G., Kovanen, P.T. (1996) TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol, 157, 4159–4165.PubMedGoogle Scholar
  59. 59.
    Oster, W., Lindemann, A., Horn, S., Mertelsmann, R., Herrmann, F. (1987) Tumor necrosis factor (TNF)-alpha but not TNF-beta induces secretion of colony stimulating factor for macrophages (CSF-1) by human monocytes. Blood, 70, 1700–1703.PubMedGoogle Scholar
  60. 60.
    Zins, K., Abraham, D., Sioud, M., Aharinejad, S. (2007) Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res, 67, 1038–1045.PubMedCrossRefGoogle Scholar
  61. 61.
    Mroczko, B., Groblewska, M., Wereszczynska-Siemiatkowska, U., Okulczyk, B., Kedra, B., Laszewicz, W., Dabrowski, A., Szmitkowski, M. (2007) Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clin Chim Acta, 380, 208–212.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaminska, J., Nowacki, M.P., Kowalska, M., Rysinska, A., Chwalinski, M., Fuksiewicz, M., Michalski, W., Chechlinska, M. (2005) Clinical significance of serum cytokine measurements in untreated colorectal cancer patients: soluble tumor necrosis factor receptor type I--an independent prognostic factor. Tumour Biol, 26, 186–194.PubMedCrossRefGoogle Scholar
  63. 63.
    Hagemann, T., Robinson, S.C., Schulz, M., Trumper, L., Balkwill, F.R., Binder, C. (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis, 25, 1543–1549.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown, P.D., Levy, A.T., Margulies, I.M., Liotta, L.A., Stetler-Stevenson, W.G. (1990) Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res, 50, 6184–6191.PubMedGoogle Scholar
  65. 65.
    Overall, C.M., Wrana, J.L., Sodek, J. (1991) Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem, 266, 14064–14071.PubMedGoogle Scholar
  66. 66.
    Biswas, C., Zhang, Y., DeCastro, R., Guo, H., Nakamura, T., Kataoka, H., Nabeshima, K. (1995) The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res, 55, 434–439.PubMedGoogle Scholar
  67. 67.
    Kanekura, T., Chen, X., Kanzaki, T. (2002) Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer, 99, 520–528.PubMedCrossRefGoogle Scholar
  68. 68.
    Kataoka, H., DeCastro, R., Zucker, S., Biswas, C. (1993) Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res, 53, 3154–3158.PubMedGoogle Scholar
  69. 69.
    Abraham , D., Zins, K., Sioud, M., Lucas, T., and Aharinejad, S. (2008) Host CD147 blockade by small interfering RNAs suppresses growth of human colon cancer xenografts. Front Biosci, 13, 5571–5579.PubMedCrossRefGoogle Scholar
  70. 70.
    Bergers, G. Benjamin, L.E. (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 3, 401–410.PubMedCrossRefGoogle Scholar
  71. 71.
    Coussens, L.M., Werb, Z. (2002) Inflammation and cancer. Nature, 420, 860–867.PubMedCrossRefGoogle Scholar
  72. 72.
    Kurose, K., Gilley, K., Matsumoto, S., Watson, P.H., Zhou, X.P., Eng, C. (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet, 32, 355–357.PubMedCrossRefGoogle Scholar
  73. 73.
    Moinfar, F., Man, Y.G., Arnould, L., Bratthauer, G.L., Ratschek, M., Tavassoli, F.A. (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res, 60, 2562–2566.PubMedGoogle Scholar
  74. 74.
    Orimo, A., Weinberg, R.A. (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle, 5, 1597–1601.PubMedCrossRefGoogle Scholar
  75. 75.
    Joyce, J.A. (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell, 7, 513–520.PubMedCrossRefGoogle Scholar
  76. 76.
    Martinez, F.O., Sica, A., Mantovani, A., Locati, M. (2008) Macrophage activation and polarization. Front Biosci, 13, 453–461.PubMedCrossRefGoogle Scholar
  77. 77.
    McDermott, R.S., Deneux, L., Mosseri, V., Vedrenne, J., Clough, K., Fourquet, A., Rodriguez, J., Cosset, J.M., Sastre, X., Beuzeboc, P., Pouillart, P., Scholl, S.M. (2002) Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw, 13, 121–127.PubMedGoogle Scholar
  78. 78.
    Goswami, S., Sahai, E., Wyckoff, J.B., Cammer, M., Cox, D., Pixley, F.J., Stanley, E.R., Segall, J.E., Condeelis, J.S. (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res, 65, 5278–5283.PubMedCrossRefGoogle Scholar
  79. 79.
    Pollard, J.W. (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 4, 71–78.PubMedCrossRefGoogle Scholar
  80. 80.
    Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., Porter, D., Hu, M., Chin, L., Richardson, A., Schnitt, S., Sellers, W.R., Polyak, K. (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6, 17–32.PubMedCrossRefGoogle Scholar
  81. 81. ,
    Park, J.E. Lenter, M.C., Zimmermann, R.N., Garin-Chesa, P., Old, L.J., Rettig, W.J. (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem, 274, 36505–36512.PubMedCrossRefGoogle Scholar
  82. 82.
    Sato, T., Sakai, T., Noguchi, Y., Takita, M., Hirakawa, S., Ito, A. (2004) Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol Oncol, 92, 47–56.PubMedCrossRefGoogle Scholar
  83. 83.
    De Wever, O., Nguyen, Q.D., Van Hoorde, L., Bracke, M., Bruyneel, E., Gespach, C., Mareel, M. (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J, 18, 1016–1018.PubMedGoogle Scholar
  84. 84.
    Li, G., Satyamoorthy, K., Meier, F., Berking, C., Bogenrieder, T., Herlyn, M. (2003) Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene, 22, 3162–3171.PubMedCrossRefGoogle Scholar
  85. 85.
    Lewis, M.P., Lygoe, K.A., Nystrom, M.L., Anderson, W.P., Speight, P.M., Marshall, J.F., Thomas, G.J. (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer, 90, 822–832.PubMedCrossRefGoogle Scholar
  86. 86.
    Orimo, A., Tomioka, Y., Shimizu, Y., Sato, M., Oigawa, S., Kamata, K., Nogi, Y., Inoue, S., Takahashi, M., Hata, T., Muramatsu, M. (2001) Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin Cancer Res, 7, 3097–3105.PubMedGoogle Scholar
  87. 87.
    Micke, P., Ostman, A. (2005) Exploring the tumour environment: cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets, 9, 1217–1233.PubMedCrossRefGoogle Scholar
  88. 88.
    Carmeliet, P. (2003) Angiogenesis in health and disease. Nat Med, 9, 653–660.PubMedCrossRefGoogle Scholar
  89. 89.
    Rafii, S., Lyden, D., Benezra, R., Hattori, K., Heissig, B. (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer, 2, 826–835.PubMedCrossRefGoogle Scholar
  90. 90.
    Kowanetz, M., Ferrara, N. (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res, 12, 5018–5022.PubMedCrossRefGoogle Scholar
  91. 91.
    Shibuya, M., Claesson-Welsh, L. (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 312, 549–560.PubMedCrossRefGoogle Scholar
  92. 92.
    Cao, R., Bjorndahl, M.A., Religa, P., Clasper, S., Garvin, S., Galter, D., Meister, B., Ikomi, F., Tritsaris, K., Dissing, S., Ohhashi, T., Jackson, D.G., Cao, Y. (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell, 6, 333–345.PubMedCrossRefGoogle Scholar
  93. 93.
    Fidler, I.J., Ellis, L.M. (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell, 79, 185–188.PubMedCrossRefGoogle Scholar
  94. 94.
    Bergom, C., Gao, C., Newman, P.J. (2005) Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk Lymphoma, 46, 1409–1421.PubMedCrossRefGoogle Scholar
  95. 95.
    Balkwill, F. (2004) Cancer and the chemokine network. Nat Rev Cancer, 4, 540–550.PubMedCrossRefGoogle Scholar
  96. 96.
    Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E.J., Krek, W. (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425, 307–311.PubMedCrossRefGoogle Scholar
  97. 97.
    Kalluri, R. (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer, 3, 422–433.PubMedCrossRefGoogle Scholar
  98. 98.
    Noel , A., Jost, M., and Maquoi, E. (2007) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol. 79, 52–60.Google Scholar
  99. 99.
    Toole, B.P. (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer, 4, 528–539.PubMedCrossRefGoogle Scholar
  100. 100.
    Bissell, M.J., Radisky, D. (2001) Putting tumours in context. Nat Rev Cancer, 1, 46–54.PubMedCrossRefGoogle Scholar
  101. 101.
    Andreasen, P.A., Kjoller, L., Christensen, L., Duffy, M.J. (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer, 72, 1–22.PubMedCrossRefGoogle Scholar
  102. 102.
    Deryugina, E.I., Quigley, J.P. (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev, 25, 9–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Creemers, L.B., Hoeben, K.A., Jansen, D.C., Buttle, D.J., Beertsen, W., Everts, V. (1998) Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants. Matrix Biol, 16, 575–584.PubMedCrossRefGoogle Scholar
  104. 104.
    Aigner, A. (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol, 124, 12–25.PubMedCrossRefGoogle Scholar
  105. 105.
    de Fougerolles, A., Manoharan, M., Meyers, R., Vornlocher, H.P. (2005) RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. Methods Enzymol, 392, 278–296.PubMedCrossRefGoogle Scholar
  106. 106.
    Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., Aigner, A. (2005) RNAi-mediated gene-targeting through systemic application of polyethyleneimine (PEI)-complexed siRNA in vivo. Gene Ther, 12, 461–466.PubMedCrossRefGoogle Scholar
  107. 107.
    Werth, S., Urban-Klein, B., Dai, L., Hobel, S., Grzelinski, M., Bakowsky, U., Czubayko, F., Aigner, A. (2006) A low molecular weight fraction of polyethyleneimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release, 112, 257–270.PubMedCrossRefGoogle Scholar
  108. 108.
    Minakuchi, Y., Takeshita, F., Kosaka, N., Sasaki, H., Yamamoto, Y., Kouno, M., Honma, K., Nagahara, S., Hanai, K., Sano, A., Kato, T., Terada, M., Ochiya, T. (2004) Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res, 32, e109.PubMedCrossRefGoogle Scholar
  109. 109.
    Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R.K., Racie, T., Rajeev, K.G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., Vornlocher, H.P. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.PubMedCrossRefGoogle Scholar
  110. 110.
    Dillon, C.P., Sandy, P., Nencioni, A., Kissler, S., Rubinson, D.A., Van Parijs, L. (2005) RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol, 67, 147–173.PubMedCrossRefGoogle Scholar
  111. 111.
    Leung, R.K., Whittaker, P.A. (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther, 107, 222–239.PubMedCrossRefGoogle Scholar
  112. 112.
    Kim, B., Tang, Q., Biswas, P.S., Xu, J., Schiffelers, R.M., Xie, F.Y., Ansari, A.M., Scaria, P.V., Woodle, M.C., Lu, P., Rouse, B.T. (2004) Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. Am J Pathol, 165, 2177–2185.PubMedCrossRefGoogle Scholar
  113. 113.
    Sioud, M., Sørensen, D.R. (2004) Systemic delivery of synthetic siRNAs. Methods Mol Biol, 252, 515–522.PubMedGoogle Scholar
  114. 114.
    Schiffelers, R.M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P.Y., Scaria, P.V., Woodle, M.C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res, 32, e149.PubMedCrossRefGoogle Scholar
  115. 115.
    Arts, G.J., Langemeijer, E., Tissingh, R., Ma, L., Pavliska, H., Dokic, K., Dooijes, R., Mesic, E., Clasen, R., Michiels, F., van der Schueren, J., Lambrecht, M., Herman, S., Brys, R., Thys, K., Hoffmann, M., Tomme, P., van Es, H. (2003) Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res, 13, 2325–2332.PubMedCrossRefGoogle Scholar
  116. 116.
    Song, E., Zhu, P., Lee, S.K., Chowdhury, D., Kussman, S., Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., Marasco, W.A., Lieberman, J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 23, 709–717.PubMedCrossRefGoogle Scholar
  117. 117.
    Santel, A., Aleku, M., Keil, O., Endruschat, J., Esche, V., Durieux, B., Loffler, K., Fechtner, M., Rohl, T., Fisch, G., Dames, S., Arnold, W., Giese, K., Klippel, A., Kaufmann, J. (2006) RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther, 13, 1360–1370.PubMedCrossRefGoogle Scholar
  118. 118.
    Tzircotis, G., Thorne, R.F., Isacke, C.M. (2005) Chemotaxis towards hyaluronan is dependent on CD44 expression and modulated by cell type variation in CD44-hyaluronan binding. J Cell Sci, 118, 5119–5128.PubMedCrossRefGoogle Scholar
  119. 119.
    Simpson, M.A., Wilson, C.M., McCarthy, J.B. (2002) Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am J Pathol, 161, 849–857.PubMedCrossRefGoogle Scholar
  120. 120.
    Zukiel, R., Nowak, S., Wyszko, E., Rolle, K., Gawronska, I., Barciszewska, M.Z., Barciszewski, J. (2006) Suppression of human brain tumor with interference RNA specific for tenascin-C. Cancer Biol Ther, 5, 1002–1007.PubMedCrossRefGoogle Scholar
  121. 121.
    Kunigal, S., Lakka, S.S., Gondi, C.S., Estes, N., Rao, J.S. (2007) RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer, 121, 2307–2316.PubMedCrossRefGoogle Scholar
  122. 122.
    Guleng, B., Tateishi, K., Ohta, M., Kanai, F., Jazag, A., Ijichi, H., Tanaka, Y., Washida, M., Morikane, K., Fukushima, Y., Yamori, T., Tsuruo, T., Kawabe, T., Miyagishi, M., Taira, K., Sata, M., Omata, M. (2005) Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res, 65, 5864–5871.PubMedCrossRefGoogle Scholar
  123. 123.
    Cheng, J.D., Dunbrack, R.L., Jr., Valianou, M., Rogatko, A., Alpaugh, R.K., Weiner, L.M. (2002) Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res, 62, 4767–4772.PubMedGoogle Scholar
  124. 124.
    Kalembeyi, I., Inada, H., Nishiura, R., Imanaka-Yoshida, K., Sakakura, T., Yoshida, T. (2003) Tenascin-C upregulates matrix metalloproteinase-9 in breast cancer cells: direct and synergistic effects with transforming growth factor beta1. Int J Cancer, 105, 53–60.PubMedCrossRefGoogle Scholar
  125. 125.
    Tanaka, K., Hiraiwa, N., Hashimoto, H., Yamazaki, Y., Kusakabe, M. (2004) Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer, 108, 31–40.PubMedCrossRefGoogle Scholar
  126. 126.
    Shuster, S., Frost, G.I., Csoka, A.B., Formby, B., Stern, R. (2002) Hyaluronidase reduces human breast cancer xenografts in SCID mice. Int J Cancer, 102, 192–197.PubMedCrossRefGoogle Scholar
  127. 127.
    Zuker, S., Hymowitz, M., Rollo, E.E., Mann, R., Conner, C.E., Cao, J., Foda, H.D., Tompkins, D.C., Toole, B.P. (2001) Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J Pathol, 158, 1921–1928.CrossRefGoogle Scholar
  128. 128.
    Gondi, C.S., Lakka, S.S., Dinh, D.H., Olivero, W.C., Gujrati, M., Rao, J.S. (2004) RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene, 23, 8486–8496.PubMedCrossRefGoogle Scholar
  129. 129.
    Pillay, V., Dass, C.R., Choong, P.F. (2007) The urokinase plasminogen activator receptor as a gene therapy target for cancer. Trends Biotechnol, 25, 33–39.PubMedCrossRefGoogle Scholar
  130. 130.
    Yan, S., Sameni, M., Sloane, B.F. (1998) Cathepsin B and human tumor progression. Biol Chem, 379, 113–123.PubMedGoogle Scholar
  131. 131.
    Meryet-Figuieres, M., Resina, S., Lavigne, C., Barlovatz-Meimon, G., Lebleu, B., Thierry, A.R. (2007) Inhibition of PAI-1 expression in breast cancer carcinoma cells by siRNA at nanomolar range. Biochimie, 89, 1228–1233.PubMedCrossRefGoogle Scholar
  132. 132.
    Bajou, K., Noel, A., Gerard, R.D., Masson, V., Brunner, N., Holst-Hansen, C., Skobe, M., Fusenig, N.E., Carmeliet, P., Collen, D., Foidart, J.M. (1998) Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med, 4, 923–928.PubMedCrossRefGoogle Scholar
  133. 133.
    Andreasen, P.A. (2007) PAI-1 - a potential therapeutic target in cancer. Curr Drug Targets, 8, 1030–1041.PubMedCrossRefGoogle Scholar
  134. 134.
    Filleur, S., Courtin, A., Ait-Si-Ali, S., Guglielmi, J., Merle, C., Harel-Bellan, A., Clezardin, P., Cabon, F. (2003) SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res, 63, 3919–3922.PubMedGoogle Scholar
  135. 135.
    Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S., Muramatsu, T. (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res, 64, 3365–3370.PubMedCrossRefGoogle Scholar
  136. 136.
    Srinivasan, D.M., Kapoor, M., Kojima, F., Crofford, L.J. (2005) Growth factor receptors: implications in tumor biology. Curr Opin Investig Drugs, 6, 1246–1249.PubMedGoogle Scholar
  137. 137.
    Gillespie, D.L., Whang, K., Ragel, B.T., Flynn, J.R., Kelly, D.A., Jensen, R.L. (2007) Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res, 13, 2441–2448.PubMedCrossRefGoogle Scholar
  138. 138.
    Rapisarda, A., Zalek, J., Hollingshead, M., Braunschweig, T., Uranchimeg, B., Bonomi, C.A., Borgel, S.D., Carter, J.P., Hewitt, S.M., Shoemaker, R.H., Melillo, G. (2004) Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res, 64, 6845–6848.PubMedCrossRefGoogle Scholar
  139. 139.
    Liang, Z., Yoon, Y., Votaw, J., Goodman, M.M., Williams, L., Shim, H. (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 65, 967–971.PubMedGoogle Scholar
  140. 140.
    Raman, D., Baugher, P.J., Thu, Y.M., Richmond, A. (2007) Role of chemokines in tumor growth. Cancer Lett, 256, 137–165.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Seyedhossein Aharinejad
    • 1
  • Mouldy Sioud
    • 2
  • Trevor Lucas
    • 3
  • Dietmar Abraham
    • 4
  1. 1.Laboratory for Cardiovascular Research, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
  2. 2.Department of Immunology, Institute for Cancer ResearchThe Norwegian Radium HospitalUniversity of OsloNorway
  3. 3.Laboratory for Cardiovascular Research, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
  4. 4.Laboratory for Cardiovascular Research, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria

Personalised recommendations