High-Throughput Real-Time PCR for Detection of Gene-Expression Levels

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 486)

Summary

While many high-throughput screening campaigns involve the measurement of protein levels or locations, at times it is desirable to measure the levels of gene expression in response to small molecules. Here, we describe a method for capturing mRNA in multiwell plates following compound treatment and measuring gene expression using real-time PCR. This streamlined protocol provides complementary information to conventional phenotypic cell-based assays, and is especially useful in cases where the gene of interest is thought to serve a regulatory function in downstream cellular phenotypes.

Key words

High-throughput gene expression mRNA capture Real-time PCR Reverse transcription 

References

  1. 1.
    Stockwell, B. R., Haggarty, S. J., and Schre-iber, S. L. (1999) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Koehler, A. N., Shamji, A. F., and Schreiber, S. L. (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J. Am. Chem. Soc. 125, 8420–8421.PubMedCrossRefGoogle Scholar
  3. 3.
    Perlman, Z. E., Slack, M. D., Feng, Y., Mitc-hison, T. J., Wu, L. F., and Altschuler, S. J. (2004) Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198.PubMedCrossRefGoogle Scholar
  4. 4.
    Hieronymus, H., Lamb, J., Ross, K. N., Peng, X. P., Clement, C., Rodina, A., Nieto, M., Du, J., Stegmaier, K., Raj, S. M., Maloney, K. N., Clardy, J., Hahn, W. C., Chiosis, G., and Golub, T. R. (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10, 321–330.PubMedCrossRefGoogle Scholar
  5. 5.
    Wei, G., Twomey, D., Lamb, J., Schlis, K., Agarwal, J., Stam, R. W., Opferman, J. T., Sallan, S. E., den Boer, M. L., Pieters, R., Golub, T. R., and Armstrong, S. A. (2006) Gene expression-based chemical genomics identifies rapamycin as a modulators of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342.PubMedCrossRefGoogle Scholar
  6. 6.
    Stegmaier, K., Ross, K. N., Colavito, S. A., O’Malley, S., Stockwell, B. R., and Golub, T. R. (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat. Genet. 36, 257–263.PubMedCrossRefGoogle Scholar
  7. 7.
    Schreiber, S. L. (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 87, 1964–1969.CrossRefGoogle Scholar
  8. 8.
    Schreiber, S. L. (2005) Small molecules: the missing link in the central dogma. Nat. Chem. Biol. 1, 64–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Cleveland, P. H. and Koutz, P. J. (2005) Nanoliter dispensing for uHTS using pin tools. Assay Drug Dev. Technol. 3, 213–225.CrossRefGoogle Scholar
  10. 10.
    Olechno, J., Ellson, R., Browning, B., Stearns, R., Mutz, M., Travis, M., Oureshi, S., and Shieh, J. (2005) Acoustic auditing as a real-time, non-invasive quality control process for both source and assay plates. Assay Drug Dev. Technol. 3, 425–437.PubMedCrossRefGoogle Scholar
  11. 11.
    Bradner, J. E., McPherson, O. M., and Koe-hler, A. N. (2006) A method for the covalent capture and screening of diverse small mole-cules in a microarray format. Nat. Protoc. 1, 2344–2352.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chemical Biology Program, Broad Institute of Harvard and MITCambridgeUSA
  2. 2.Cardiovascular Institute at the Beth Israel Deaconess Medical Center Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations