Assay for Isolation of Inhibitors of Her2-Kinase Expression

  • Gabriela Chiosis
  • Adam B. Keeton
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 486)

Summary

Her2 (ErbB2) protein is overexpressed in breast and other solid tumors, and its expression is associated with progressive disease. Current therapies directed toward Her2 either block dimerization of the receptor or inhibit tyrosine kinase activity to disrupt intracellular signaling. However, little is known about alternative mechanisms for suppressing Her2 expression, possibly by inducing degradation or blocking synthesis. Here, we describe a hybrid western-blotting and enzyme-linked immunosorbent assay (ELISA) designed to identify in low- to medium-throughput format noncytotoxic compounds that reduce expression of Her2 protein.

Key words

Breast cancer Heat-shock protein 90 (Hsp90) Her2 (ErbB2) tyrosine kinase Whole-cell immunoblot 

Notes

Acknowledgments

The author would like to thank Joungnam Kim and Cristina C. Clement for technical assistance. This work was supported by R03 MH076408, and a Susan G. Komen grant, R01-SGK-BCTR0504381.

References

  1. 1.
    Yarden, Y. and Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2, 127–137.PubMedCrossRefGoogle Scholar
  2. 2.
    Klapper, L. N., Kirschbaum, M. H., Sela, M., and Yarden, Y. (2000) Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. 77, 25–79.PubMedCrossRefGoogle Scholar
  3. 3.
    Yu, D. and Hung, M. C. (2000) Over-expression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19, 6115–6121.PubMedCrossRefGoogle Scholar
  4. 4.
    Ross, J. S. and Gray, G. S. (2003) Targeted therapy for cancer: the HER-2/neu and Herceptin story. Clin. Leadersh. Manag. Rev. 17, 333–340.PubMedGoogle Scholar
  5. 5.
    Arteaga, C. (2003) Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin. Oncol. 3 Suppl 7, 3–14.CrossRefGoogle Scholar
  6. 6.
    Citri, A., Gan, J., Mosesson, Y., Vereb, G., Szollosi, J., and Yarden, Y. (2004) Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. EMBO Rep. 12, 1165–1170.CrossRefGoogle Scholar
  7. 7.
    Citri, A., Kochupurakkal, B. S., and Yarden, Y. (2004) The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 1, 51–60.Google Scholar
  8. 8.
    Aoyagi, S. and Archer, T. K. (2005) Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends. Cell Biol. 11, 565–567.CrossRefGoogle Scholar
  9. 9.
    Huezo, H., Vilenchik, M., Rosen, N., and Chiosis, G. (2003) Microtiter cell-based assay for the detection of agents that alter cellular levels of Her2 and EGFR. Chem. Biol. 10, 629–634.PubMedCrossRefGoogle Scholar
  10. 10.
    Llauger, L., He, H., Kim, J., Aguirre, J., Rosen, N., Peters, U., Davies, P., and Chiosis, G. (2005) 8-Arylsulfanyl and 8-arylsulfoxyl adenine derivatives as inhibitors of the heat shock protein 90. J. Med. Chem. 48, 2892–2905.PubMedCrossRefGoogle Scholar
  11. 11.
    He, H., Zatorska, D., Kim, J., Aguirre, J., Llauger, L., She, Y., Wu, N., Immormino, R. M., Gewirth, D. T., and Chiosis, G. (2006) Identification of potent water-soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem. 49, 381–390.PubMedCrossRefGoogle Scholar
  12. 12.
    Stockwell, B. R., Haggarty, S. J., and Schreiber, S. L. (1999) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 2, 71–83.CrossRefGoogle Scholar
  13. 13.
    Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974.PubMedCrossRefGoogle Scholar
  14. 14.
    Haggarty, S. J., Mayer, T. U., Miyamoto, D. T., Fathi, R., King, R. W., Mitchison, T. J., and Schreiber, S. L. (2000) Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol. 4, 275–286.CrossRefGoogle Scholar
  15. 15.
    Blaskovich, M. A., Sun, J., Cantor, A., Turkson, J., Jove, R., and Sebti, S. M. (2003) Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res. 63, 1270–1279.PubMedGoogle Scholar
  16. 16.
    Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M., and Schreiber, S. L. (2003) Domain-selective small molecule inhibitor of HDAC6-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 100, 4389–4394.PubMedCrossRefGoogle Scholar
  17. 17.
    Haggarty, S. J., Koeller, K. M., Kau, T. R., Silver, P. A., Roberge, M., and Schreiber, S. L. (2003) Small molecule modulation of the human chromatid decatenation checkpoint. Chem. Biol. 12, 1267–1279CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gabriela Chiosis
    • 1
  • Adam B. Keeton
    • 2
  1. 1.Program in Molecular Pharmacology and ChemistryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Southern Research Molecular Libraries Screening Center, Assay Implementation GroupSouthern Research InstituteBirminghamUSA

Personalised recommendations