Antioxidant QSAR Modeling as Exemplified on Polyphenols

  • Bono Lučić
  • Dragan Amić
  • Nenad Trinajstić
Part of the Methods In Molecular Biology book series (MIMB, volume 477)


Methodology for deriving quantitative structure-activity relationship (QSAR) models based on computed molecular descriptors, representing numerically structural features of polyphenols, and applicable to the antioxidant activity of polyphenols is delineated. The application of this methodology is illustrated on a data set of 100 polyphenols. Prior to the computation of molecular descriptors, molecular structures are coded in the SMILES form, a computer-acceptable version of structure, and then converted to the 3D form by the CORINA program. Using 3D structures, molecular descriptors can be calculated by one of several programs developed (we used the DRAGON program in this study). Finally, using computer program for selection of most important descriptors in the model, a two-descriptor model is selected and its use is illustrated.

Key words

Polyphenols Flavonoids Antioxidant activity Free radical scavenging QSAR Quantitative structure-activity relationship Molecular descriptors TEAC assay ABTS 


  1. 1.
    Heim, K. E., Tagliaferro, A. R., and Bobilya, D. J. (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13, 572–584.CrossRefPubMedGoogle Scholar
  2. 2.
    Bors, W., Heller, W., Michel, K., and Stettmaier, K. (1996) Flavonoids and Polyphenols: Chemistry and Biology, in Handbook of Antioxidants (Cadenas, E., and Packer L., eds.), Marcel Dekker, Inc., New York, NY, pp. 409–466.Google Scholar
  3. 3.
    Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Arouma, O. I., and Bahorun T. (2005) Phenolics as potential antioxidant therapeutic agents: mechanism of actions. Mutat. Res. 579, 200–213.PubMedGoogle Scholar
  4. 4.
    Havsteen, B. H. (2002) The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67–202.CrossRefPubMedGoogle Scholar
  5. 5.
    Hansch, C., and Fujita, T. (1964) ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626.CrossRefGoogle Scholar
  6. 6.
    Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T. D., Gramatica , P., Jaworska J. S., Kahn, S., Klopman, G., Marchant, C. A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G. Y., Perkins, R., Roberts, D. W., Schultz, T. W., Stanton, D. T., van de Sandt, J. J. M., Tong, W., Veith, G., and Yang, C. (2005) Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure–Activity Relationships. The Report and Recommendations of ECVAM Workshop 52. ATLA 33, 155–173, December 17, 2007).
  7. 7.
    Zhang, H.-Y. (2005) Structure-activity relationships and rational design strategies for radical-scavenging antioxidants. Curr. Comp. Aided Drug Des. 1, 257–273.CrossRefGoogle Scholar
  8. 8.
    Zhang, H.-Y., Yang, D.-P., and Tang, G.-Y. (2006) Multipotent antioxidants: from screening to design. Drug Discov. Today 11, 749–754.CrossRefPubMedGoogle Scholar
  9. 9.
    Amić, D., Davidović-Amić, D., Bešlo, D., Rastija, V. Lučić, B., and Trinajstić, N. (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem. 14, 827–845.CrossRefPubMedGoogle Scholar
  10. 10.
    Haenen, G. R. M. M., Arts, M. J. T. J., Bast, A., and Coleman, M. D. (2006) Structure and activity in assessing antioxidant activity in vitro and in vivo. A critical appraisal illustrated with the flavonoids. Environ. Toxicol. Pharmacol. 21, 191–198.CrossRefGoogle Scholar
  11. 11.
    Hermans, N., Cos, P., Maes, L., De Bruyne, T., Vanden Berghe, D., Vlietinck, A. J., and Pieters, L. (2007) Challenges and pitfalls in antioxidant research. Curr. Med. Chem. 14, 417–430.CrossRefPubMedGoogle Scholar
  12. 12.
    Rice-Evans, C. A., Miller, N. J., and Paganga G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956.CrossRefPubMedGoogle Scholar
  13. 13.
    Rice-Evans, C. A., and Miller, N. J. (1998) Structure-Antioxidant Activity Relationships of Flavonoids and Isoflavonoids, in Flavonoids in Health and Disease (Rice-Evans, C. A. and Packer, L., eds.), Marcel Dekker, Inc., New York, NY, pp. 199–219.Google Scholar
  14. 14.
    Lien, E. J., Ren, S., Bui, H.-H., and Wang, R. (1999) Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic. Biol. Med. 26, 285–294.CrossRefPubMedGoogle Scholar
  15. 15.
    Yoo, K. M., Kim, D.-O., and Lee C. Y. (2007) Evaluation of different methods of antioxidant measurement. Food. Sci. Biotechnol. 16, 177–182.Google Scholar
  16. 16.
    van den Berg, R., Haenen, G. R. M. M., van den Berg, H., van der Vijgh, W., and Bast, A. (2000) The predictive value of the antioxidant capacity of structurally related flavonoids using the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. 70, 391–395.CrossRefGoogle Scholar
  17. 17.
    Arts, M. J. T. J., Dallinga, J. S., Voss, H.-P., Haenen, G. R. M. M., and Bast, A. (2003) A critical appraisal of the use of the antioxidant capacity (TEAC) assay in defining optimal antioxidant structures. Food Chem. 80, 409–414.CrossRefGoogle Scholar
  18. 18.
    Arts, M. J. T. J., Haenen, G. R. M. M., Voss, H. -P., and Bast, A. (2004) Antioxidant capacity of reaction products limits the applicability of the Trolox equivalent antioxidant capacity (TEAC) assay. Food Chem. Toxicol. 42, 45–49.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim, D.-O., and Lee, C. Y. (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44, 253–273.CrossRefPubMedGoogle Scholar
  20. 20.
    Cai, Y.-Z., Sun, M., Xing, J., Luo, Q., and Corke, H. (2006) Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78, 2872–2888.CrossRefPubMedGoogle Scholar
  21. 21.
    Weininger, D. (1988) SMILES, a chemical language for information systems. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36.Google Scholar
  22. 22.
  23. 23.
    Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., and Steinhauer, V. (1996) Chemical information in 3D space. J. Chem. Inf. Comput. Sci. 36, 1030–1037.Google Scholar
  24. 24.
    CORINA Program (2006) Molecular Networks GmbH Computerchemie, Erlangen, Germany ( and (accessed December 10, 2007).
  25. 25.
    Oellien, F., and Nicklaus, M. C. (2004) Online SMILES Translator and Structure File Generator, December 10, 2007).
  26. 26.
    TALETE srl, (2006) DRAGON Professional 5.4 program, Milano, Italy (
  27. 27.
    Todeschini, R. and Consonni, V. (2000) Handbook of Molecular Descriptors, Wiley-VCH, Weinheim.Google Scholar
  28. 28.
    Katritzky, A. R., Lobanov, V., and Karelson, M. (1995) CODESSA 2.21 Program, University of Florida, Gainesville, USA (
  29. 29.
    Gramatica, P. (2007) Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701.CrossRefGoogle Scholar
  30. 30.
    Lučić, B., and Trinajstić, N. (1999) Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J. Chem. Inf. Comput. Sci. 39, 121–132.Google Scholar
  31. 31.
    Amić, D., Davidović-Amić, D., Bešlo, D., and Trinajstić, N. (2003) Structure-radical scavenging activity relationships of flavonoids. Croat. Chem. Acta 76, 55–61.Google Scholar
  32. 32.
    Miyahara, M., Ohtaka, H., Katayama, H., Tatsumi, Y., Miyaichi, Y., and Tomimori T. (1993) Structure-activity relationship of flavonoids in suppresing rat liver lipid peroxidation. Yakugaku Zasshi 113, 133–154.PubMedGoogle Scholar
  33. 33.
    StatSoft, Inc. (2005) STATISTICA 7.1 (data analysis software system), version 7.1 (

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bono Lučić
    • 1
  • Dragan Amić
    • 2
  • Nenad Trinajstić
    • 3
  1. 1.The Rugjer Bǒskovíc InstituteCroatia
  2. 2.Faculty of AgricultureThe Josip Juraj Strossmayer UniversityCroatia
  3. 3.The Rugjer Boškovíc InstituteCroatia

Personalised recommendations