Cancer Epidemiology pp 281-306

Part of the Methods in Molecular Biology book series (MIMB, volume 472)

Molecular Epidemiology of DNA Repair Genes in Bladder Cancer

  • Anne E. Kiltie


Bladder cancer is a common disease, whose major risk factors include smoking and occupational exposure to chemicals. Superficial bladder cancer has significant healthcare cost implications due to the need for repeated cystoscopic surveillance. Chemical carcinogens can undergo metabolic activation and detoxification in the liver and polymorphisms in the relevant genes have been shown to be associated with bladder cancer risk. In addition, DNA repair enzymes are required to repair the DNA damage associated with carcinogen exposure. The main pathways involved are nucleotide excision repair, base excision repair, and double strand break repair.

Investigation of individual polymorphisms in DNA repair genes in bladder cancer has yielded few robust positive findings, which is not surprising given the multifactorial nature of the disease. Pathway approaches using novel genotyping technologies will allow more comprehensive studies of multiple polymorphisms in multiple genes. It will also be possible to investigate gene—environment interaction more rigorously than heretofore, using novel statistical methodology, in larger studies and through collaborative efforts within consortia. The results of the genome-wide association studies in bladder cancer are awaited with interest. In the future, genetic tests might be used in the prevention of bladder cancer to encourage lifestyle changes in those at highest risk of developing the disease, and in the treatment of bladder cancer to optimise cure rates whilst minimising morbidity in a cost-effective manner.

Key words

Bladder cancer consortia DNA repair genes polymorphism surveillance. 


  1. 1.
    Cancer Research UK. 2006. CancerStats Incidence-UK.Google Scholar
  2. 2.
    Cancer Research UK. 2007. CancerStats Mortality-UK.Google Scholar
  3. 3.
    Zeegers, M. P., Tan, F. E., Dorant, E., and van Den Brandt, P. A. (2000) The impact of characteristics of cigarette smoking on urinary tract cancer risk: a meta-analysis of epidemiologic studies. Cancer Causes Control 89, 630–639.Google Scholar
  4. 4.
    Puente, D., Hartge, P., Greiser, E., Cantor, K. P., King, W. D., Gonz á lez, C. A., et al. (2006) A pooled analysis of bladder cancer case-control studies evaluating smoking in men and women. Cancer Causes Control 17, 71–79.CrossRefPubMedGoogle Scholar
  5. 5.
    Kogevinas, M., 't Mannetje, A., Cordier, S., Ranft, U., Gonz á lez, C. A., Vineis, P. , et al. (2003) Occupation and bladder cancer among men in Western Europe. Cancer Causes Control 14, 907–914.CrossRefPubMedGoogle Scholar
  6. 6.
    Kiemeney, L. A. and Schoenberg, M. (1996) Familial transitional cell carcinoma. J Urol 156, 867–872.CrossRefPubMedGoogle Scholar
  7. 7.
    Lin, J., Spitz, M., R., Dinney, C., P. , Etzel, C., J., Grossman, H., B., and Wu, X. (2006) Bladder cancer risk as modified by family history and smoking. Cancer 107, 705–711.CrossRefPubMedGoogle Scholar
  8. 8.
    Murta-Nascimento, C., Silverman, D., T., Kogevinas, M., Garc í a-Closas, M., Roth-man, N., Tard ó n, A., et al. (2007) Risk of bladder cancer associated with family history of cancer: do low-penetrance polymorphisms account for the increase in risk? Cancer Epidemiol Biomarkers Prev 16, 1595–600.CrossRefPubMedGoogle Scholar
  9. 9.
    Guidelines on TaT1 (Non-Muscle Invasive) Bladder Cancer [ online].
  10. 10.
    Lamm, D. L., Blumenstein, B. A., Criss-man, J. D., Montie, J. E., Gottesman, J. E., Lowe, B. A., et al. (2000) Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J Urol 163, 1634–1124.Google Scholar
  11. 11.
    Kotwal, S., Choudhury, A., Johnston, C., Paul, A., B., Whelan, P., and Kiltie, A. (2008) Similar treatment outcomes for radical cystectomy and radical radiotherapy in invasive bladder cancer treated at a United Kingdom specialist treatment center. Int J Radiat Oncol Biol Phys 70, 456–463.CrossRefPubMedGoogle Scholar
  12. 12.
    Advanced Bladder Cancer (ABC) Meta-analysis collaboration. (2005) Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data. Eur Urol 48, 202–206.CrossRefGoogle Scholar
  13. 13.
    Wu, X., Zhao, H., Suk, R., and Christiani, D. C. (2004) Genetic susceptibility to tobacco-related cancer. Oncogene 23, 6500–6523.CrossRefPubMedGoogle Scholar
  14. 14.
    Engel, L. S., Taioli, E., Pfeiffer, R., Garcia-Closas, M., Marcus, P. M., Lan, Q., et al. (2002) Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol 156, 95–109.CrossRefPubMedGoogle Scholar
  15. 15.
    Garc í a-Closas, M., Malats, N., Silverman, D., Dosemeci, M., Kogevinas, M., Hein, D. W., et al. (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366, 649–659.CrossRefPubMedGoogle Scholar
  16. 16.
    Barnes, D. E. and Lindahl, T. (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38, 445–476.CrossRefPubMedGoogle Scholar
  17. 17.
    Hoeijmakers, J. H. (2001) Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374.CrossRefPubMedGoogle Scholar
  18. 18.
    O'Driscoll, M. and Jeggo, P. A. (2006) The role of double-strand break repair — insights from human genetics. Nature Reviews. Genetics 7, 45–54.PubMedGoogle Scholar
  19. 19.
    Buck, D., Malivert, L., de Chasseval, R., Barraud, A., Fondan è che, M. C., Sanal, O., et al. (2006) Cernunnos, a novel nonho-mologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124, 287–299.CrossRefPubMedGoogle Scholar
  20. 20.
    Wallace, S. S. (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150, 60–79.CrossRefGoogle Scholar
  21. 21.
    Baynes, C., Healey, C. S., Pooley, K. A., Scollen, S., Luben, R. N., Thompson, D. J., et al. (2007) Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res 9, R27.CrossRefPubMedGoogle Scholar
  22. 22.
    Harland, M., Taylor, C. F., Bass, S., Churchman, M., Randerson-Moor, J. A., Holland, E. A., et al. (2005) Intronic sequence variants of the CDKN2A gene in melanoma pedigrees. Genes Chromosomes Cancer 43, 128–136.CrossRefPubMedGoogle Scholar
  23. 23.
    Goode, E.L., Ulrich, C.M., and Potter, J.D. (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11, 1513–1530.PubMedGoogle Scholar
  24. 24.
    Kuschel, B., Auranen, A., McBride, S., Novik, K. L., Antoniou, A., Lipscombe, J. M., et al. (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11 , 1399–1407.CrossRefPubMedGoogle Scholar
  25. 25.
    Kiyohara, C., Takayama, K., and Nakanishi, Y. (2006) Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 54, 267–283.CrossRefPubMedGoogle Scholar
  26. 26.
    Zollner, S. and Pritchard, J. K. (2007) Overcoming the winner's curse: estimating penetrance parameters from case-control data. Am J Hum Genet 80, 605–615.CrossRefPubMedGoogle Scholar
  27. 27.
    Matullo, G., Guarrera, S., Carturan, S., Peluso, M., Malaveille, C., Davico, L., et al. (2001) DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case-control study. Int J Cancer 92, 562–567.CrossRefPubMedGoogle Scholar
  28. 28.
    Wacholder, S., Chanock, S., Garcia-Clo-sas, M., El Ghormli, L., and Rothman, N. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96, 434–442.CrossRefPubMedGoogle Scholar
  29. 29.
    Bourgain, C., Génin, E., Cox, N., and Clerget-Darpoux, F. (2007) Are genome-wide association studies all that we need to dissect the genetic component of complex human diseases? Eur J Hum Genet 15, 260–263.CrossRefPubMedGoogle Scholar
  30. 30.
    Brennan, P. (2002) Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis 23, 381–387.CrossRefPubMedGoogle Scholar
  31. 31.
    Garcia-Closas, M., Malats, N., Real, F. X., Welch, R., Kogevinas, M., Chatterjee, N., et al. (2006) Genetic Variation in the nucle-otide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15, 536–542.CrossRefPubMedGoogle Scholar
  32. 32.
    Figueroa, J. D., Malats, N., Real, F. X., Sil-verman, D., Kogevinas, M., Chanock, S., et al. (2007) Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet 121, 233–242.CrossRefPubMedGoogle Scholar
  33. 33.
    Figueroa, J. D., Malats, N., Rothman, N., Real, F. X., Silverman, D., Kogevinas, M., et al. (2007) Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis 28, 1788–1793.CrossRefPubMedGoogle Scholar
  34. 34.
    Schabath, M. B., Delclos, G. L., Grossman, H. B., Wang, Y., Lerner, S. P., Chamberlain, R. M., et al. (2005) Polymorphisms in XPD exons 10 and 23 and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 14, 878–884.CrossRefPubMedGoogle Scholar
  35. 35.
    Wu, X., Gu, J., Grossman, H.B., et al. (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78, 464–479.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang, M., Dinney, C. P., Lin, X., Lin, J., Grossman, H. B., and Wu, X. (2007) High- order interactions among genetic variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiol Biomarkers Prev 16, 84–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhu, Y., Lai, M., Yang, H., Lin, J., Huang, M., Grossman, H. B., et al. (2007) Genotypes, haplotypes and diplotypes of XPC and risk of bladder cancer. Carcinogenesis 28, 698–703.CrossRefPubMedGoogle Scholar
  38. 38.
    Sak, S. C., Barrett, J. H., Paul, A. B., Bishop, D. T, and Kiltie, A. E. (2005) The polyAT, intronic IVS11-6 and Lys939Gln XPC polymorphisms are not associated with transitional cell carcinoma of the bladder. Br J Cancer 92, 2262–2265.CrossRefPubMedGoogle Scholar
  39. 39.
    Sak, S. C., Barrett, J. H., Paul, A. B., Bishop, D. T., and Kiltie, A. E. (2006) Comprehensive analysis of 22 XPC polymorphisms and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15, 2537–2541.CrossRefPubMedGoogle Scholar
  40. 40.
    Sak, S. C., Barrett, J. H., Paul, A. B., Bishop, D. T., Kiltie, A. E. (2007) DNA repair gene XRCC1 polymorphisms and bladder cancer risk. BMC Genet 10, 13.CrossRefGoogle Scholar
  41. 41.
    Andrew, A. S., Nelson, H. H., Kelsey, K. T., Moore, J. H., Meng, A. C., Casella, D. P., et al. (2006) Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis 27, 1030–1037.CrossRefPubMedGoogle Scholar
  42. 42.
    Spitz, M. R., Wu, X., Wang, Y., Wang, L. E., Shete, S., Amos, C. I., et al. (2001) Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 61, 1354–1357.PubMedGoogle Scholar
  43. 43.
    Wu, X., Zhao, H., Wei, Q., Amos, C. I., Zhang, K., Guo, Z., et al. (2003) XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24, 505–509.CrossRefPubMedGoogle Scholar
  44. 44.
    Lin, J., Kadlubar, F. F., Spitz, M. R., Zhao, H., and Wu, X. (2005) A modified host cell reactivation assay to measure DNA repair capacity for removing 4-aminobiphenyl adducts: a pilot study of bladder cancer. Cancer Epidemiol Biomarkers Prev 14, 1832–1836.CrossRefPubMedGoogle Scholar
  45. 45.
    Mohrenweiser, H. W., Wilson, D. M., and Jones, I. M. (2003) Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res 526, 93–125.PubMedGoogle Scholar
  46. 46.
    Khan, S. G., Metter, E. J., Tarone, R. E., Bohr, V. A., Grossman, L., Hedayati, M., et al. (2000) A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis 21, 1821–1825.CrossRefPubMedGoogle Scholar
  47. 47.
    Seker, H., Butkiewicz, D., Bowman, E. D., Rusin, M., Hedayati, M., Grossman, L., et al. (2001) Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 61, 7430–7434.PubMedGoogle Scholar
  48. 48.
    Porter, P. C., Mellon, I., and States, J. C. (2005) XP-A cells complemented with Arg- 228Gln and Val234Leu polymorphic XPA alleles repair BPDE-induced DNA damage better than cells complemented with the wild type allele. DNA Repair 2, 341–349.CrossRefGoogle Scholar
  49. 49.
    Clarkson, S. G. and Wood, R. D. (2005) Polymorphisms in the human XPD (ERCC2) gene, DNA repair capacity and cancer susceptibility: an appraisal. DNA Repair 4, 1068–1074.CrossRefPubMedGoogle Scholar
  50. 50.
    Hung, R. J., Hall, J., Brennan, P., and Boffetta, P. (2005) Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 162, 925–942.CrossRefPubMedGoogle Scholar
  51. 51.
    Han, S., Zhang, H. T., Wang, Z., Xie,Y., Tang, R., Mao, Y., et al. (2006) DNA repair gene XRCC3 polymorphisms and cancer risk: a meta-analysis of 48 case-control studies. Eur J Hum Genet 14, 1136–1144.CrossRefPubMedGoogle Scholar
  52. 52.
    Matullo, G., Dunning, A. M., Guarrera, S., Baynes, C., Polidoro, S., Garte, S., et al. (2006) DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 27, 997–1007.CrossRefPubMedGoogle Scholar
  53. 53.
    Fan, J. B., Chee, M. S., and Gunderson, K. L. (2006) Highly parallel genomic assays. Nature reviews. Genetics 7, 632–644.PubMedGoogle Scholar
  54. 54.
    Matullo, G., Guarrera, S., Sacerdote, C., Polidoro, S., Davico, L., Gamberini, S., et al. (2005) Polymorphisms/haplotypes in DNA repair genes and smoking: a bladder cancer case-control study. Cancer Epidemiol Biomarkers Prev 14, 2569–2578.CrossRefPubMedGoogle Scholar
  55. 55.
    Hahn, L. W., Ritchie, M. D., and Moore, J. H. (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioin- formatics 19, 376–382.CrossRefGoogle Scholar
  56. 56.
    Gudmundsson, J., Sulem, P., Manolescu, A., Amundadottir, L. T., Gudbjartsson, D., Helgason, A., et al. (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39, 631–637.CrossRefPubMedGoogle Scholar
  57. 57.
    Haiman, C. A., Patterson, N., Freedman, M. L., Myers, S. R., Pike, M. C., Walisze- wska, A., et al. (2007) Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39, 638–644.CrossRefPubMedGoogle Scholar
  58. 58.
    Yeager, M., Orr, N., Hayes, R. B., Jacobs, K. B., Kraft, P. , Wacholder, S., et al. (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39, 645–649.CrossRefPubMedGoogle Scholar
  59. 59.
    Tomlinson, I., Webb, E., Carvajal-Carmona, L., Broderick, P., Kemp, Z., Spain, S., et al. (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39, 984–988.CrossRefPubMedGoogle Scholar
  60. 60.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093.CrossRefPubMedGoogle Scholar
  61. 61.
    Gu, J., Zhao, H., Dinney, C. P., Zhu, Y., Leibovici, D., Bermejo, C. E., et al. (2005) Nucleotide excision repair gene polymorphisms and recurrence after treatment for superficial bladder cancer. Clin Cancer Res 11, 1408–1415.CrossRefPubMedGoogle Scholar
  62. 62.
    Sakano, S., Kumar, R., Larsson, P., Onelöv, E., Adolfsson, J., Steineck, G., et al. (2005) A single-nucleotide polymorphism in the XPG gene, and tumour stage, grade, and clinical course in patients with non muscle-invasive neoplasms of the urinary bladder. BJU Int 97, 847–851.CrossRefGoogle Scholar
  63. 63.
    Sanyal, S., De Verdier, P. J., Steineck, G., Larsson, P., Onelöv, E., Hemminki, K., et al. (2007) Polymorphisms in XPD, XPC and the risk of death in patients with urinary bladder neoplasms. Acta Oncologica 46, 31–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Ryk, C., Kumar, R., Sanyal, S., de Verdier, P. J., Hemminki, K., Larsson, P., et al. (2006) Influence of polymorphism in DNA repair and defence genes on p53 mutations in bladder tumours. Cancer Lett 241, 142–149.CrossRefPubMedGoogle Scholar
  65. 65.
    Stern, M. C., Conway, K., Li, Y., Mistry, K., and Taylor, J. A. (2006) DNA repair gene polymorphisms and probability of p53 mutation in bladder cancer. Mol Carcinog 45, 715–719.CrossRefPubMedGoogle Scholar
  66. 66.
    Sakano, S., Matsumoto, H., Yamamoto, Y., Kawai, Y., Eguchi, S., Ohmi, C., et al. (2006) Association between DNA repair gene polymorphisms and p53 alterations in Japanese patients with muscle-invasive bladder cancer. Pathobiology 73, 295–303.CrossRefPubMedGoogle Scholar
  67. 67.
    Park, D.J., Stoehlmacher J., Zhang, W., Tsao-Wei, D. D., Groshen, S., and Lenz, H. J. (2001) A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res 61, 8654–8658.PubMedGoogle Scholar
  68. 68.
    Stoehlmacher, J., Park, D. J., Zhang, W., Yang, D., Groshen, S., Zahedy, S., et al. (2004) A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer 91, 344–354.PubMedGoogle Scholar
  69. 69.
    Zhou, W., Gurubhagavatula, S., Liu, G., Park, S., Neuberg, D. S., Wain, J. C., et al. (2004) Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 10, 4939–4943.CrossRefPubMedGoogle Scholar
  70. 70.
    Gurubhagavatula, S., Liu, G., Park, S., Zhou, W., Su, L., Wain, J. C., et al. (2004) XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non- small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 22, 2594–2601.CrossRefPubMedGoogle Scholar
  71. 71.
    Sakano, S., Wada, T., Matsumoto, H., Sugiyama, S., Inoue, R., Eguchi, S., et al. (2006) Single nucleotide polymorphisms in DNA repair genes might be prognostic factors in muscle-invasive bladder cancer patients treated with chemoradiotherapy. Br J Cancer 95, 561–570.CrossRefPubMedGoogle Scholar
  72. 72.
    Sanyal, S., Festa, F., Sakano, S., Zhang, Z., Steineck, G., Norming, U., et al. (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25, 729–734.CrossRefPubMedGoogle Scholar
  73. 73.
    Broberg, K., Bjork, J., Paulsson, K., Hoglund, M., and Albin, M. (2005) Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis 26, 1263–1271.CrossRefPubMedGoogle Scholar
  74. 74.
    Stern, M. C., Johnson, L. R., Bell, D. A., and Taylor, J. A. (2002) XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11, 1004–1011.PubMedGoogle Scholar
  75. 75.
    Shen, M., Hung, R. J., Brennan, P., Malaveille, C., Donato, F., Placidi, D., et al. (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12, 1234–1240.PubMedGoogle Scholar
  76. 76.
    Terry, P. D., Umbach, D. M., and Taylor, J. A. (2006) APE1 genotype and risk of bladder cancer: evidence for effect modification by smoking. Int J Cancer 118, 3170–3173.CrossRefPubMedGoogle Scholar
  77. 77.
    Karahalil, B., Kocabas, N. A., and Ozçelik, T. (2006) DNA repair gene polymorphisms and bladder cancer susceptibility in a Turkish population. Anticancer Res 26, 4955–4958.PubMedGoogle Scholar
  78. 78.
    Stern, M.C., Umbach, D. M., van Gils, C.H., Lunn, R.M., and Taylor, J. A. (2001) DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 10, 125–131.PubMedGoogle Scholar
  79. 79.
    Kelsey, K. T., Park, S., Nelson, H. H., and Karagas, M. R. (2004) A population-based case-control study of the XRCC1 Arg- 399Gln polymorphism and susceptibility to bladder cancer. Cancer Epidemiol Biomarkers Prev 13, 1337–1341.PubMedGoogle Scholar
  80. 80.
    Stern, M. C., Umbach, D. M., Lunn, R. M., and Taylor, J. A. (2002) DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11, 939–943.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anne E. Kiltie
    • 1
  1. 1.Molecular Radiobiology Group, Cancer Research UK Clinical CentreSt James's University HospitalWest YorkshireUK

Personalised recommendations