Advertisement

Genetic Polymorphisms in the Transforming Growth Factor-β Signaling Pathways and Breast Cancer Risk and Survival

  • Wei Zheng
Part of the Methods in Molecular Biology book series (MIMB, volume 472)

Abstract

The transforming growth factor (TGF)-β signaling pathway plays a critical role in breast cancer development and progression. Limited data from human studies, however, are currently available to link biomarkers in this pathway directly to the risk and survival of breast cancer. Most of the previous epidemiologic studies have focused on evaluating polymorphisms in the TGFB1 gene (T+29C, rs1982073) and the TGFBR1 gene (9A/6A), and the results have been inconsistent. The present review summarizes epidemiologic evidence regarding the association of genetic polymorphisms in the TGF β pathway genes with breast cancer risk and survival and provides rationale and new approaches to continuing the research in this area.

Key words

Breast cancer genetic factors genetic polymorphisms survival susceptibility transforming growth factor-β TGF β. 

References

  1. 1.
    Moses HL, Branum EL, Proper JA, Robinson RA. (1981) Transforming growth factor production by chemically transformed cells. Cancer Res 41, 2842–2848.PubMedGoogle Scholar
  2. 2.
    Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78, 5339–5343.CrossRefPubMedGoogle Scholar
  3. 3.
    Benson JR. (2004) Role of transforming growth factorβ in breast carcinogenesis. Lancet Oncol 5, 229–239.CrossRefPubMedGoogle Scholar
  4. 4.
    Elliott RL, Blobe GC. (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23, 2078–2093.CrossRefPubMedGoogle Scholar
  5. 5.
    Bierie B, Moses HL. (2006) TGFβ : the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506–520.CrossRefPubMedGoogle Scholar
  6. 6.
    Galliher AJ, Neil JR, Scheimann W P. (2006) Role of transforming growth factor-β in cancer progression. Future Oncology 2, 743–763.CrossRefPubMedGoogle Scholar
  7. 7.
    Pierce Jr DF, Gorska AE, Chytil A, et al. (1995) Mammary tumour suppression by transforming growth factor-1 transgene expression. Proc Natl Acad Sci USA 92, 4254–4258.CrossRefPubMedGoogle Scholar
  8. 8.
    Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. (2003) Trans-genic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammar y tumor formation. Am J Pathol 163, 1539–1549.PubMedGoogle Scholar
  9. 9.
    Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, Reiss M. (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62, 497–505.PubMedGoogle Scholar
  10. 10.
    Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK. (2003) Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res 63, 3783–3790.PubMedGoogle Scholar
  11. 11.
    Xie W, Rimm DL, Lin Y, Shih WJ, Reiss M. (2003) Loss of Smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J. 9, 302–312.CrossRefPubMedGoogle Scholar
  12. 12.
    Tannehill-Gregg SH, Kusewitt DF, Rosol TJ, Weinstein M. (2004) The roles of Smad2 and Smad3 in the development of chemically induced skin tumors in mice. Vet Pathol 41, 278–282.CrossRefPubMedGoogle Scholar
  13. 13.
    Perttu MC, Martikainen PM, Huhtala HS, Blauer M, Tammela TL, Tuohimaa PJ, Syvala H. (2006) Altered levels of Smad2 and Smad4 are associated with human prostate carcinogenesis. Prostate Cancer Prostatic Dis 9, 185–189.CrossRefPubMedGoogle Scholar
  14. 14.
    Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Jakowicki JA, Krajewska WM. (2003) Expression and intracellular localization of Smad proteins in human endometrial cancer. Oncol Rep. 10, 1539–1544.PubMedGoogle Scholar
  15. 15.
    Chen T, Carter D, Garrigue-Antar L, Reiss M. (1998) Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58, 4805–4810.PubMedGoogle Scholar
  16. 16.
    Lucke CD, Philpott A, Metcalfe JC, Thompson AM, Hughes-Davies L, Kemp PR, Hesketh R. (2001) Inhibiting mutations in the transforming growth factor beta type 2 receptor in recurrent human breast cancer. Cancer Res 61, 482–485.PubMedGoogle Scholar
  17. 17.
    Desruisseau S, Palmari J, Giusti C, Romain S, Martin P-M, Berthois Y. (2006) Determination of TGFbeta1 protein level in human primary breast cancers and its relationship with survival. Br J Cancer 94, 239–246.CrossRefPubMedGoogle Scholar
  18. 18.
    Grau AM, Wen W, Ramroopsignh D, Gao YT, Zi J, Cai Q, Shu XO, Zheng W. (2007) Circulating transforming growth factor-beta 1 and breast cancer prognosis: Results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarker Prev (Submitted).Google Scholar
  19. 19.
    Ziv E, Cauley J, Morin PA, Saiz R, Browner WS. (2001) Association between the T29 → C polymorphism in the transforming growth factorβ 1 gene and breast cancer among elderly white women: The Study of Oste-oporotic Fractures. JAMA 285, 2859–2863.CrossRefPubMedGoogle Scholar
  20. 20.
    Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC. (2003) A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63, 2610–2615.PubMedGoogle Scholar
  21. 21.
    Hishida A, Iwata H, Hamajima N, Matsuo K, Mizutani M, Iwase T, Miura S, Emi N, Hirose K, Tajima K. (2003) Transforming growth factorβ 1 T29C polymorphism and breast cancer risk in Japanese women. Breast Cancer (Tokyo, Japan) 10, 63–69.CrossRefPubMedGoogle Scholar
  22. 22.
    Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, Paulweber B, Bahadori B, Samonigg H. (2003) The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett 201, 181–184.CrossRefPubMedGoogle Scholar
  23. 23.
    Jin Q, Hemminki K, Grzybowska E, Klaes R, Soderberg M, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Pamula J, Pekala W, Forsti A. (2004) Polymorphisms and haplotype structures in genes for transforming growth factor beta1 and its receptors in familial and unselected breast cancers. Int J Cancer 112, 94–99.CrossRefPubMedGoogle Scholar
  24. 24.
    Le Marchand L, Haiman CA, van den Berg D, Wilkens LR, Kolonel LN, Henderson BE. (2004) T29C polymorphism in the transforming growth factorβ 1 gene and postmenopausal breast cancer risk: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 13, 412–415.PubMedGoogle Scholar
  25. 25.
    Saha A, Gupta V, Bairwa NK, Malhotra D, Bamezai R. (2004) Transforming growth factor-β 1 genotype in sporadic breast cancer patients from India: status of enhancer, promoter, 5′-untranslated-region and exon-1 polymorphisms. Eur J Immunogenet 31, 37–342.CrossRefPubMedGoogle Scholar
  26. 26.
    Sigurdson AJ, Hauptmann M, Chatterjee N, et al. (2004) Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes. BMC Cancer 4, 9.CrossRefPubMedGoogle Scholar
  27. 27.
    Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, Hegarty C, McDan-iel B, Rademaker A, Oddoux C, Ostrer H, Michel LS, Huang H, Chen Y, Ahsan H, Offit K, Pasche B. (2005) Combined genetic assessment of transforming growth factor-β signaling pathway variants may predict breast cancer risk. Cancer Res 65, 3454–3461.PubMedGoogle Scholar
  28. 28.
    Lee KM, Park SK, Hamajima N, Tajima K, Yoo KY, Shin A, Noh DY, Ahn SH, Hir-vonen A, Kang D. (2005) Genetic polymorphisms of TGF-β 1 & TNF-β and breast cancer risk. Breast Cancer Res Treat 90, 149–155.CrossRefPubMedGoogle Scholar
  29. 29.
    Shin A, Shu XO, Cai Q, Gao YT, Zheng W. (2005) Genetic polymorphisms of the Transforming Growth Factor-β 1 gene and breast cancer risk: A possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 14, 1567–1570.CrossRefPubMedGoogle Scholar
  30. 30.
    Skerrett DL, Moore EM, Bernstein DS. (2005) Cytokine genotype polymorphisms in breast carcinoma: associations of TGF-β 1 with relapse. Cancer Invest 23, 208–214.CrossRefPubMedGoogle Scholar
  31. 31.
    Feigelson HS, Patel AV, Diver WR, Stevens VL, Thun MJ, Calle EE. (2006) Transforming growth factorβ receptor type I and transforming growth factorβ 1 polymorphisms are not associated with postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 15, 1236–1237.CrossRefPubMedGoogle Scholar
  32. 32.
    Gonzalez-Zuloeta Ladd AM, Arias-Vasquez A, Siemes C, Coebergh JW, Hofman A, Witteman J, Uitterlinden A, Stricker BH, van Duijn CM. (2007) Transforming-growth factorβ 1 Leu10Pro polymorphism and breast cancer morbidity. Eur J Cancer 43, 371–374.CrossRefPubMedGoogle Scholar
  33. 33.
    Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. (2000) Association of a T29 → C polymorphism of the transforming growth factor-β 1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 101, 2783–2787.PubMedGoogle Scholar
  34. 34.
    Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD. (1999) Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet 8, 93–97.CrossRefPubMedGoogle Scholar
  35. 35.
    Silverman ES, Palmer LJ, Subramaniam V, Hallock A, Mathew S, Vallone J, Faffe DS, Shikanai T, Raby BA, Weiss ST, Shore SA. (2004) Transforming growth factor-β 1 promoter polymorphism C-509T is associated with asthma. Am J Respir Crit Care Med 169, 214–219.CrossRefPubMedGoogle Scholar
  36. 36.
    Hoffman SC, Stanley EM, Darrin Cox E, Craighead N, DiMercurio BS, Koziol DE, Harlan DM, Kirk AD, Blair PJ. (2001) Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28-stimulated peripheral blood lymphocytes. Transplantation 72, 1444–1450.CrossRefGoogle Scholar
  37. 37.
    Pasche B, Kolachana P, Nafa K, Satagopan J, Chen YG, Lo RS, Brener D, Yang D, Kirstein L, Oddoux C, Ostrer H, Vineis P, Varesco L, Jhanwar S, Luzzatto L, Massague J, Offit K. (1999) Tβ R-I (6A) is a candidate tumor susceptibility allele. Cancer Res 59, 5678–5682.PubMedGoogle Scholar
  38. 38.
    Baxter SW, Choong DY, Eccles DM, Campbell IG. (2002) Transforming growth factor β receptor 1 polyalanine polymorphism and exon 5 mutation analysis in breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev 11, 211–214.PubMedGoogle Scholar
  39. 39.
    Chen T, Jackson CR, Link A, Markey MP, Colligan BM, Douglass LE, Pemberton JO, Deddens JA, Graff JR, Carter JH. (2006) Int7G24A variant of transforming growth factor-β receptor type I is associated with invasive breast cancer. Clin Cancer Res 12, 392–397.CrossRefPubMedGoogle Scholar
  40. 40.
    Pasche B, Knobloch TJ, Bian Y, Liu J, Phu-kan S, Rosman D, Kaklamani V, Baddi L, Siddiqui FS, Frankel W, Prior TW, Schuller DE, Agrawal A, Lang J, Dolan ME, Vokes EE, Lane WS, Huang CC, Caldes T, Di Cristofano A, Hampel H, Nilsson I, von Heijne G, Fodde R, Murty VV, de la Chapelle A, Weghorst CM. (2005) Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA 294, 1634–1646.CrossRefPubMedGoogle Scholar
  41. 41.
    Beisner J, Buck MB, Fritz P, Dippon J, Schwab M, Brauch H, Zugmaier G, Pfizen-maier K, Knabbe C. (2006) A novel functional polymorphism in the transforming growth factor-β2 gene promoter and tumor progression in breast cancer. Cancer Res 66, 7554–7561.CrossRefPubMedGoogle Scholar
  42. 42.
    Seijo ER, Song H, Lynch MA, Jennings R, Qong X, Lazaridis E, Muro-Cacho C, Weghorst CM, Munoz-Antonia T. (2001) Identification of genetic alterations in the TGF-beta type II receptor gene promoter. Mutat Res 483, 19–26.PubMedGoogle Scholar
  43. 43.
    Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, Yang G, Jin F, Zheng W. (2004) Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res 64, 836–839.CrossRefPubMedGoogle Scholar
  44. 44.
    Lu H, Shu XO, Cui Y, Kataoka N, Cai QY, Gao YT, Zheng W. (2005) Association of genetic polymorphisms in the VEGF gene with breast cancer survival. Cancer Res 65, 5015–5019.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang X, Shu XO, Cai Q, Ruan Z, Gao YT, Zheng W. (2006) Functional plasmino-gen activator inhibitor-1 gene variants and breast cancer survival. Clin Cancer Res 12, 6037–6042.CrossRefPubMedGoogle Scholar
  46. 46.
    Goode EL, Dunning AM, Kuschel B, Healey CS, Day NE, Ponder BA, Easton DF, Pharoah PP. (2002) Effect of germ-line genetic variation on breast cancer survival in a population-based study. Cancer Res 62, 3052–3057.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wei Zheng
    • 1
  1. 1.Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer CenterVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations