Advertisement

Application of lacZ Transgenic Mice to Cell Lineage Studies

  • Catherine M. Watson
  • Paul A. Trainor
  • Tania Radziewic
  • Gregory J. Pelka
  • Sheila X. Zhou
  • Maala Parameswaran
  • Gabriel A. Quinlan
  • Monica Gordon
  • Karin Sturm
  • Patrick P. L. Tam
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

Cell lineage analyses trace the hierarchy of cell types derived from a progenitor population. Critical to these analyses is the ability to track reliably all or defined subsets of the clonal descendants of the progenitor population. This necessitates marking the cells with a heritable and cell autonomous marker. Transgenes encoding molecules that can be visualized directly in situ without compromising cell differentiation, such as the reporter, β-galactosidase encoded by lacZ and chloramphenicol acetyltransferase, encoded by the CAT gene are the most widely used. The lacZ can be readily detected using a sensitive histo-chemical assay such that cells in which the β-galactosidase gene is transcrip-tionally active produce a blue stain in tissue sections or in whole mounts (1). Some lineage studies demand the simultaneous detection of the lacZ product and other tissue-specific proteins or transcripts. In this chapter, we discuss the experimental strategies in which the lacZ...

Keywords

Phosphate Buffer Saline Canada Balsam Prehybridization Solution Free Phosphate Buffer Saline Alkaline Phosphatase Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kothary R, Clapoff S, Darling S, Perry MD, Moran LA, Rossant J (1988) Induc-ible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105:707–714.Google Scholar
  2. 2.
    Tan SS, Williams EA, Tam PPL (1993) X-chromosome inactivation occurs at dif¬ferent times in different tissues of the post implantation mouse embryo. Nature Genet. 3:170–175.CrossRefPubMedGoogle Scholar
  3. 3.
    Freidrich G, Soriano P (1991) Promotor traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513– 1523;. Development 115:703–715.Google Scholar
  4. 4.
    Beddington RSP, Morgenstern J, Land H, Hogan A (1989) An in situ enzyme marker for the mid-gestation mouse embryo and the visualisation of inner cell mass clones during early organogenesis. Development 106:37–46.PubMedGoogle Scholar
  5. 5.
    Lebon JM, Tam PP, Singer-Sam J, Riggs AD, Tan SS (1995) Mouse endogenous X-linked genes do not show lineage-specific delayed inactivation during develop¬ment. Genet Res 65(3):223–227.CrossRefPubMedGoogle Scholar
  6. 6.
    Sugimoto M, Tan S-S, Takagi, N. (2000) X chromosome inactivation revealed by the X-linked lacZ transgene activity in periimplantation mouse embryos. Int J Dev Biol 44:177–182.PubMedGoogle Scholar
  7. 7.
    Tan SS, Breen S (1993) Radial mosaicism and tangential cell dispersion both con¬tribute to mouse neocortical development. Nature 362:638–640.CrossRefPubMedGoogle Scholar
  8. 8.
    Stone LM, Finger TE, Tam PPL, Tan SS (1995) Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci USA 92:1916–1920.CrossRefPubMedGoogle Scholar
  9. 9.
    Tan SS,. Faulkner-Jones B, Breen SJ, Walsh M, Bertram JF, Reese BE (1995) Cell dispersion patterns in different cortical regions studied with an X-inactivated trans-genic marker. Development 121:1029–1039.PubMedGoogle Scholar
  10. 10.
    Stone LM, Tan S-S, Tam PP, Finger TE (2002) Analysis of cell lineage relation¬ships in taste buds. J Neurosci 22(11):4522–4529.PubMedGoogle Scholar
  11. 11.
    Echelard Y, Vassileva G, McMahon AP (1994) Cis-acting regulatory sequences gov¬erning Wnt-1 expression in the developing mouse CNS. Development 120:2213– 2224.PubMedGoogle Scholar
  12. 12.
    Tan SS (1991) Liver specific and position effect expression of a retinol-binding protein-lacZ fusion gene (RBP-lacZ) in transgenic mice. Dev Biol 146:24–37.CrossRefPubMedGoogle Scholar
  13. 13.
    Trainor PA, Tan SS, Tam PPL (1994). Cranial paraxial mesoderm: regionalisation of cell fate and impact upon craniofacial development in mouse embryos. Develop¬ment 120:2397–2408.PubMedGoogle Scholar
  14. 14.
    Quinlan GA, Williams EA, Tan SS, Tam PPL (1995) Neuroectodermal fate of epi-blast cells in the distal region of the mouse egg cylinder: implication for body plan organisation during early embryogenesis. Development 121:87–948.PubMedGoogle Scholar
  15. 15.
    Trainor PA, Tam PPL (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121:2569–2582.PubMedGoogle Scholar
  16. 16.
    Reese BE, Harvey AR, Tan SS (1995) Radial and tangential dispersion patterns in the mouse retina are class specific. Proc Natl Acad Sci USA 92:2494–2498.CrossRefPubMedGoogle Scholar
  17. 17.
    Bonnerot C, Rocancourt D, Briand P, Grimber G, Nicolas JF (1987) A β-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc Natl Acad Sci USA 84:6795–6799.CrossRefPubMedGoogle Scholar
  18. 18.
    Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear localisation. Cell 39:499–509.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Catherine M. Watson
    • 1
  • Paul A. Trainor
    • 2
  • Tania Radziewic
    • 1
  • Gregory J. Pelka
    • 1
  • Sheila X. Zhou
    • 1
  • Maala Parameswaran
    • 1
  • Gabriel A. Quinlan
    • 1
  • Monica Gordon
    • 1
  • Karin Sturm
    • 1
  • Patrick P. L. Tam
    • 1
  1. 1.Embryology UnitChildren's Medical Research Institute and University of SydneySydneyAustralia
  2. 2.Stowers InstituteKansas CityUSA

Personalised recommendations