Bioinformatics pp 395-421 | Cite as

Developing Fixed-Parameter Algorithms to Solve Combinatorially Explosive Biological Problems

  • Falk Hüffner
  • Rolf Niedermeier
  • Sebastian Wernicke
Part of the Methods in Molecular Biology™ book series (MIMB, volume 453)

Abstract

Fixed-parameter algorithms can efficiently find optimal solutions to some computationally hard (NP-hard) problems. This chapter surveys five main practical techniques to develop such algorithms. Each technique is circumstantiated by case studies of applications to biological problems. It also presents other known bioinformatics-related applications and gives pointers to experimental results.

Key words:

Computationally hard problems combinatorial explosions discrete problems fixed-parameter tractability optimal solutions 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemein-schaft, Emmy Noether research group PIAF (fixed-parameter algorithms), NI 369/4 (Falk Hüffner), and the Deutsche Telekom Stiftung (Sebastian Wernicke).

References

  1. 1.
    Garey, M. R., Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York.Google Scholar
  2. 2.
    Papadimitriou, C. H. (1994) Computational Complexity. Addison-Wesley, Reading, Mass.Google Scholar
  3. 3.
    Cormen, T. H., Leiserson, C. E., Rivest, R. L., et al. (2001) Introduction to Algorithms, 2nd ed. MIT Press, Cambridge, MA.Google Scholar
  4. 4.
    Papadimitriou, C. H. (1997) NP-complete-ness: a retrospective. Proc. 24th International Colloquium on Automata, Languages and Programming (ICALP ′97) Degano, P., Gorrieri, R., Marchetti-Spaccamela, A., (eds). Springer, New York.Google Scholar
  5. 5.
    Ausiello, G., Crescenzi, P., Gambosi, G., et al. (1999) Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, New York.Google Scholar
  6. 6.
    Vazirani, V. V. (2001) Approximation Algorithms. Springer, New York.Google Scholar
  7. 7.
    Michalewicz, Z., Fogel, D. B. (2004) How to Solve It: Modern Heuristics, 2nd ed. Springer, New York.Google Scholar
  8. 8.
    Downey, R. G., Fellows, M. R. (1999) Parameterized Complexity. Springer, New York.Google Scholar
  9. 9.
    Flum, J., Grohe, M. (2006) Parameterized Complexity Theory. Springer, New York.Google Scholar
  10. 10.
    Niedermeier, R. (2006) Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York.CrossRefGoogle Scholar
  11. 11.
    Diestel, R. (2005) Graph Theory, 3rd ed. Springer, New York.Google Scholar
  12. 12.
    Bixby, R. E. (2002) Solving real-world linear programs: a decade and more of progress. Operations Res 50, 3–15.CrossRefGoogle Scholar
  13. 13.
    Damaschke, P. (2006) Parameterized enumeration, transversals, and imperfect phy-logeny reconstruction. Theoret Comp Sci 351, 337–350.CrossRefGoogle Scholar
  14. 14.
    Abu-Khzam, F. N., Collins, R. L., Fellows, M. R., et al. (2004) Kernelization algorithms for the Vertex Cover problem: theory and experiments. Proc. 6th Workshop on Algorithm Engineering and Experiments (ALENEX ′04). SIAM, Bangkok, Thailand.Google Scholar
  15. 15.
    Chor, B., Fellows, M. R., Juedes, D. W. (2004) Linear kernels in linear time, or how to save k colors in O(n 2) steps. Proc. 30th International Workshop on Graph-Theoretic Concepts in Computer Science (WG ′04). Springer, New York.Google Scholar
  16. 16.
    Chen, J., Kanj, I. A., Xia, G. (2006) Improved parameterized upper bounds for Vertex Cover. Proc. 31st International Symposium on Mathematical Foundations of Computer Science (MFCS ′06), volume 4162 of LNCS. Springer, New York.Google Scholar
  17. 17.
    Chesler, E. J., Lu, L., Shou, S., et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37, 233–242.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheetham, J., Dehne, F. K. H. A., Rau-Chaplin, A., et al. (2003) Solving large FPT problems on coarse-grained parallel machines. J Comput Syst Sci 67, 691–706.CrossRefGoogle Scholar
  19. 19.
    Abu-Khzam, F. N., Langston, M. A., Shanbhag, P., et al. (2006) Scalable parallel algorithms for FPT problems. Algorithmica 45, 269–284.CrossRefGoogle Scholar
  20. 20.
    Gramm, J., Guo, J., Hüffner, F., et al. (2006) Data reduction, exact, and heuristic algorithms for clique cover. ACM J Exp Algorith.Google Scholar
  21. 21.
    Dehne, F. K. H. A., Langston, M. A., Luo, X., et al. (2006) The cluster editing problem: Implementations and experiments. Proc. 2nd International Workshop on Parameterized and Exact Computation (IWPEC ′06). Springer, New York.Google Scholar
  22. 22.
    Skiena, S. S. (1998) The Algorithm Design Manual. Springer-Verlag, New York.Google Scholar
  23. 23.
    Gramm, J., Guo, J., Hüffner, F., et al. (2004) Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347.CrossRefGoogle Scholar
  24. 24.
    Gramm, J., Niedermeier, R., Rossmanith, P. (2003) Fixed-parameter algorithms for closest string and related problems. Algo-rithmica 37, 25–42.Google Scholar
  25. 25.
    Stojanovic, N., Florea, L., Riemer, C., et al. (1999) Comparison of five methods for finding conserved sequences in multiple alignments of gene regulatory regions. Nucl Acids Res 27, 3899–3910.PubMedCrossRefGoogle Scholar
  26. 26.
    Gramm, J. (2003) Fixed-Parameter Algorithms for the Consensus Analysis of Genomic Sequences. PhD thesis, Universität Tübin-gen, Germany.Google Scholar
  27. 27.
    Fellows, M. R., Gramm, J., Niedermeier, R. (2006) On the parameterized intractability of motif search problems. Combinatorica 26, 141–167.CrossRefGoogle Scholar
  28. 28.
    Gramm, J., Guo, J., Niedermeier, R. (2006) Parameterized intractability of distinguishing substring selection. Theory Comput Syst 39, 545–560.CrossRefGoogle Scholar
  29. 29.
    Marx, D. (2005) The closest substring problem with small distances. Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS ′05). Springer, New York.Google Scholar
  30. 30.
    Felner, A., Korf, R. E., Hanan, S. (2004) Additive pattern database heuristics. J Artif Intell Res 21, 1–39.CrossRefGoogle Scholar
  31. 31.
    Gramm, J., Niedermeier, R. (2003) A fixed-parameter algorithm for minimum quartet inconsistency. J Comput Syst Sci 67, 723–741.CrossRefGoogle Scholar
  32. 32.
    Wu, G., You, J.-H., Lin, G. (2005) A lookahead branch-and-bound algorithm for the maximum quartet consistency problem. Proc. 5th Workshop on Algorithms in Bioinformatics (WABI ′05). Springer, New York.Google Scholar
  33. 33.
    Bodlaender, H. L. (1998) A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45.CrossRefGoogle Scholar
  34. 34.
    Bodlaender, H. L. (2005) Discovering tree-width. Proc. 31st Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM ′05). Springer, New York.Google Scholar
  35. 35.
    Alber, J., Dorn, F., Niedermeier, R. (2005) Empirical evaluation of a tree decomposition based algorithm for Vertex Cover on planar graphs. Discrete Appl Math 145, 219–231.CrossRefGoogle Scholar
  36. 36.
    Betzler, N., Niedermeier, R., Uhlmann, J. (2006) Tree decompositions of graphs: Saving memory in dynamic programming. Discrete Opt 3, 220–229.CrossRefGoogle Scholar
  37. 37.
    Xu, J., Jiao, F., Berger, B. (2005) A tree-decomposition approach to protein structure prediction. Proc. 4th International IEEE Computer Society Computational Systems Bioinformatics Conference (CSB 2005). IEEE Computer Society, Los Alamitos, CA.Google Scholar
  38. 38.
    Song, Y., Liu, C., Malmberg, R. L., et al L. (2005) Tree decomposition based fast search of RNA structures including pseudoknots in genomes. Proc. 4th International IEEE Computer Society Computational Systems Bioinformatics Conference (CSB 2005). IEEE Computer Society, Los Alamitos, CA.Google Scholar
  39. 39.
    Jensen, F. V. (2001) Bayesian Networks and Decision Graphs. Springer, New York.Google Scholar
  40. 40.
    Bachoore, E., Bodlaender, H. L. (2006) Weighted Treewidth: Algorithmic Techniques and Results. Technical Report UU-CS-2006–013. University of Utrecht, Utrecht, The Ntherlands.Google Scholar
  41. 41.
    Alon, N., Yuster, R., Zwick, U. (1995) Color-coding. JACM 42, 844–856.CrossRefGoogle Scholar
  42. 42.
    Hüffner, F., Wernicke, S., Zichner, T. (2007). Algorithm engineering for color-coding to facilitate signaling pathway detection, in Advances in Bioinformatics and Computational Biology. World Scientific, Hackensack, NJ, in press.Google Scholar
  43. 43.
    Scott, J., Ideker, T., Karp, R. M., et al. (2006) Efficient algorithms for detecting signaling pathways in protein interaction networks. J Comput Biol 13, 133–144.PubMedCrossRefGoogle Scholar
  44. 44.
    Shlomi, T., Segal, D., Ruppin, E., et al. (2006) QPath: a method for querying pathways in a protein-protein interaction network. BMC Bioinformat 7, 199.CrossRefGoogle Scholar
  45. 45.
    Kneis, J., Mölle, D., Richter, S., et al. (2006) Divide-and-color. Proc. 32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG ′06), Springer, New York, in press.Google Scholar
  46. 46.
    Reed, B., Smith, K., Vetta, A. (2004) Finding odd cycle transversals. Oper Res Letts 32, 299–301.CrossRefGoogle Scholar
  47. 47.
    Panconesi, A., Sozio, M. (2004) Fast hare: A fast heuristic for single individual SNP hap-lotype reconstruction. Proc. 4th Workshop on Algorithms in Bioinformatics (WABI ′04), volume 3240 of LNCS. Springer, New York.Google Scholar
  48. 48.
    Hüffner, F. (2005) Algorithm engineering for optimal graph bipartization. Proc. 4th International Workshop on Efficient and Experimental Algorithms (WEA ′05). Springer, New York.Google Scholar
  49. 49.
    Festa, P., Pardalos, P. M., Resende, M. G. C. (1999) Feedback set problems, in (Du, D. Z., Pardalos, P. M., eds.), Handbook of Combinatorial Optimization, vol. A. Kluwer, Dordrecht, The Netherlands.Google Scholar
  50. 50.
    Becker, A., Geiger, D., Schäffer, A. (1998) Automatic selection of loop breakers for genetic linkage analysis. Hum Genet 48, 49–60.Google Scholar
  51. 51.
    Dehne, F. K. H. A., Fellows, M. R., Lang-ston, M. A., et al. (2005) An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. Proc. 11th International Computing and Combinatorics Conference (COCOON ′05). Springer, New York.Google Scholar
  52. 52.
    Guo, J., Gramm, J., Hüffner, F., et al. (2005) Improved fixed-parameter algorithms for two feedback set problems. Proc. 9th Workshop on Algorithms and Data Structures (WADS ′05). Springer, New York.Google Scholar
  53. 53.
    Becker, A., Bar-Yehuda, R., Geiger, D. (2000) Randomized algorithms for the loop cutset problem. J Artif Intell Res 12, 219–234.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Falk Hüffner
    • 1
  • Rolf Niedermeier
    • 1
  • Sebastian Wernicke
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations