Bioinformatics pp 3-31

Part of the Methods in Molecular Biology™ book series (MIMB, volume 453)

UNAFold

Software for Nucleic Acid Folding and Hybridization
  • Nicholas R. Markham
  • Michael Zuker

Abstract

The UNAFold software package is an integrated collection of programs that simulate folding, hybridization, and melting pathways for one or two single-stranded nucleic acid sequences. The name is derived from “Unified Nucleic Acid Folding.” Folding (secondary structure) prediction for single-stranded RNA or DNA combines free energy minimization, partition function calculations and stochastic sampling. For melting simulations, the package computes entire melting profiles, not just melting temperatures. UV absorbance at 260 nm, heat capacity change (Cp), and mole fractions of different molecular species are computed as a function of temperature. The package installs and runs on all Unix and Linux platforms that we have looked at, including Mac OS X. Images of secondary structures, hybridizations, and dot plots may be computed using common formats. Similarly, a variety of melting profile plots is created when appropriate. These latter plots include experimental results if they are provided. The package is “command line” driven. Underlying compiled programs may be used individually, or in special combinations through the use of a variety of Perl scripts. Users are encouraged to create their own scripts to supplement what comes with the package. This evolving software is available for download at http://www.bioinfo.rpi.edu/applications/hybrid/download.php.

Key words:

RNA folding nucleic acid hybridization nucleic acid melting profiles (or DNA melting profiles) free energy minimization partition functions melting temperature. 

References

  1. 1.
    Bellman, R. E. (1957)Dynamic Programming. Princeton University Press, Princeton, NJ.Google Scholar
  2. 2.
    Waterman, M. S., Smith, T. F. (1978) RNA secondary structure: a complete mathematical analysis.Math Biosci 42, 257–266.CrossRefGoogle Scholar
  3. 3.
    Waterman, M. S. (1978) Secondary structure of single-stranded nucleic acids, in (Rota, G.-C., ed.),Studies in Foundations and Combinatorics, Academic Press, New York.Google Scholar
  4. 4.
    Nussinov, R. (1980) Some rules for ordering nucleotides in DNA.Nucleic Acids Res 8, 4545–4562.PubMedCrossRefGoogle Scholar
  5. 5.
    Zuker, M., Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.Nucleic Acids Res 9, 133–148.PubMedCrossRefGoogle Scholar
  6. 6.
    Sankoff, D., Kruskal, J. B., eds. (1983)Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA.Google Scholar
  7. 7.
    Zuker, M. (1989) The use of dynamic programming algorithms in RNA secondary structure prediction, in (Waterman, M. S., ed.),Mathematical Methods for DNA Sequences. CRC Press, Boca Raton, FL.Google Scholar
  8. 8.
    Zuker, M. (1994) Prediction of RNA secondary structure by energy minimization, in (Griffin, A. M., Griffin, H. G., eds.),Computer Analysis of Sequence Data,. Humana Press, Totowa, NJ.Google Scholar
  9. 9.
    Zuker, M., Mathews, D. H., Turner, D. H. (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide, in (Barciszewski J., Clark, B. F. C., eds.),RNA Biochemistry and Biotechnology. Kluwer, Dordrecht.Google Scholar
  10. 10.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res 31, 3406–3415.PubMedCrossRefGoogle Scholar
  11. 11.
    Hofacker, I. L., Fontana, W., Stadler, P. F., et al. (1994) Fast folding and comparison of RNA secondary structures.Monatsh Chem 125, 167–188.CrossRefGoogle Scholar
  12. 12.
    Wuchty, S., Fontana, W., Hofacker, I. L., et al. (1999) Complete suboptimal folding of RNA and the stability of secondary structures.Biopolymers 49, 145–165.PubMedCrossRefGoogle Scholar
  13. 13.
    Hofacker, I. L. (2003) Vienna RNA secondary structure server.Nucleic Acids Res 31, 3429–3431.PubMedCrossRefGoogle Scholar
  14. 14.
    McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure.Biopolymers 29, 1105–1119.PubMedCrossRefGoogle Scholar
  15. 15.
    Ding, Y., Lawrence, C. E. (2001) Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond.Nucleic Acids Res 29, 1034–1046.PubMedCrossRefGoogle Scholar
  16. 16.
    Ding, Y., Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction.Nucleic Acids Res 31, 7280–7301.PubMedCrossRefGoogle Scholar
  17. 17.
    Ding, Y., Lawrence, C. E. (2004) Sfold web server for statistical folding and rational design of nucleic acids.Nucleic Acids Res 32, W135–W141.PubMedCrossRefGoogle Scholar
  18. 18.
    Allawi, H. A., SantaLucia, J. Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA.Biochemistry 36, 10581–10594.PubMedCrossRefGoogle Scholar
  19. 19.
    SantaLucia, J. Jr. (1998) A unified view of polymer, dumbell, and oligonucleotide DNA nearest-neighbor thermodynamics.Proc Natl Acad Sci U S A 95, 1460–1465.PubMedCrossRefGoogle Scholar
  20. 20.
    SantaLucia, J. Jr., Hicks, D. (2004) The thermodynamics of DNA structural motifs.Annu Rev Biophys Biom 33, 415–440.CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Hammer, D. A., Graves, D. J. (2005) Competitive hybridization kinetics reveals unexpected behavior patterns.Bio-phys J 89, 2950–2959.Google Scholar
  22. 22.
    Kilgard, M. J. (1996)OpenGL Programming for the X Window System. Addison-Wesley, Boston.Google Scholar
  23. 23.
    Puglisi, J. D., Tinoco, I. Jr. (1989) Absorb-ance melting curves of RNA, in (Dahlberg, J. E., Abelson, J. N. eds.),RNA Processing Part A: General Methods. Academic Press, New York.Google Scholar
  24. 24.
    Waugh, A., Gendron, P., Altman, R., et al. (2002) RNAML: a standard syntax for exchanging RNA information.RNA 8, 707–717.PubMedCrossRefGoogle Scholar
  25. 25.
    Jelesarov, I., Bosshard, H. R. (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomo-lecular recognition.J Mol Recog 12, 3–18.CrossRefGoogle Scholar
  26. 26.
    Walter, A. E., Turner, D. H., Kim, J., et al. (1994) Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA.Proc Natl Acad Sci U S A 91, 9218–9222.PubMedCrossRefGoogle Scholar
  27. 27.
    Mathews, D. H., Sabina, J., Zuker, M., et al. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.J Mol Biol 288:911–940.CrossRefGoogle Scholar
  28. 28.
    De Rijk, P., De Wachter, R. (1997) RnaViz2, a program for the visualisation of RNA secondary structure.Nucleic Acids Res 25, 4679–4684.PubMedCrossRefGoogle Scholar
  29. 29.
    De Rijk, P., De Wachter, R. (2003) RnaViz2: an improved representation of RNA secondary structure.Bioinformatics 19, 299–300.PubMedCrossRefGoogle Scholar
  30. 30.
    Dai, L. Zimmerly, S. (2002) Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retro-element behavior.Nucleic Acids Res 30, 1091–1102.PubMedCrossRefGoogle Scholar
  31. 31.
    Toor, N., Hausner, G., Zimmerly, S. (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases.RNA 7, 1142–1152.PubMedCrossRefGoogle Scholar
  32. 32.
    Michel, F., Umesono, K., Ozeki, H. (1989) Comparative and functional anatomy of group II catalytic introns: a review.Gene 82, 5–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Zuker, M., Jacobson, A. B. (1998) Using reliability information to annotate RNA secondary structures.RNA 4, 669–679.PubMedCrossRefGoogle Scholar
  34. 34.
    Jacobson, A. B., Arora, R., Zuker, M., et al. (1998) Structural plasticity in RNA and its role in the regulation of protein translation in coliphage qβ.J Mol Biol 275, 589–600.PubMedCrossRefGoogle Scholar
  35. 35.
    Mathews, D. H. (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization.RNA 10, 1174–1177.CrossRefGoogle Scholar
  36. 36.
    Markham, N. R., Zuker, M. (2005) DINAMelt web server for nucleic acid melting prediction.Nucleic Acids Res 33, W577–W581.PubMedCrossRefGoogle Scholar
  37. 37.
    Tyagi, S., Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization.Nat Biotechnol 4, 303–308.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nicholas R. Markham
    • 1
  • Michael Zuker
    • 2
  1. 1.Xerox Litigation ServicesAlbany
  2. 2.Mathematical Sciences and Biology DepartmentRensselaer Polytechnic InstituteTroy

Personalised recommendations