μChIP: Chromatin Immunoprecipitation for Small Cell Numbers

  • John Arne Dahl
  • Philippe Collas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 567)

Abstract

Chromatin immunoprecipitation (ChIP) is a technique of choice for studying protein–DNA interactions. ChIP has been used for mapping the location of modified histones on DNA, often in relation to transcription or differentiation. Conventional ChIP protocols, however, require large number of cells, which limits the applicability of ChIP to rare cell samples. ChIP assays for small cell numbers (in the range of 10,000–100,000) have been recently reported; however, these remain lengthy. Our laboratory has elaborated fast ChIP assays suitable for small cell numbers (100–100,000) and for the immunoprecipitation of histone proteins or transcription factors under cross-linking conditions. We describe here a rapid micro (μ)ChIP assay suited for multiple parallel ChIPs from a single chromatin batch from 1,000 cells. The assay is also applicable to a single immunoprecipitation from 100 cells.

Key Words

Chromatin immunoprecipitation ChIP histone acetylation methylation epigenetics 

Notes

Acknowledgments

Our work is supported by the FUGE, YFF, STAMCELLER, and STORFORSK programs of the Research Council of Norway and by the Norwegian Cancer Society.

References

  1. 1.
    Collas, P. and Dahl, J. A. (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front. Biosci. 13, 929–943.PubMedCrossRefGoogle Scholar
  2. 2.
    O'Neill, L. P. and Turner, B. M. (1995) Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957.PubMedGoogle Scholar
  3. 3.
    O'Neill, L. P. and Turner, B. M. (1996) Immunoprecipitation of chromatin. Methods Enzymol. 274, 189–197.PubMedCrossRefGoogle Scholar
  4. 4.
    O'Neill, L. P., Vermilyea, M. D. and Turner, B. M. (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat. Genet. 38, 835–841.PubMedCrossRefGoogle Scholar
  5. 5.
    Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M. and Fisher, A. G. (2006) Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538.PubMedCrossRefGoogle Scholar
  6. 6.
    Nelson, J. D., Denisenko, O., Sova, P. and Bomsztyk, K. (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res. 34, e2.PubMedCrossRefGoogle Scholar
  7. 7.
    Dahl, J. A. and Collas, P. (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046.PubMedCrossRefGoogle Scholar
  8. 8.
    Attema, J. L., Papathanasiou, P., Forsberg, E. C., Xu, J., Smale, S. T. and Weissman, I. L. (2007) Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc. Natl. Acad. Sci. U.S.A. 104, 12371–12376.PubMedCrossRefGoogle Scholar
  9. 9.
    Bernstein, B. E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D. K., Huebert, D. J., McMahon, S., Karlsson, E. K., Kulbokas, E. J., III, Gingeras, T. R., Schreiber, S. L. and Lander, E. S. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R. and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.PubMedCrossRefGoogle Scholar
  11. 11.
    Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L. and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.PubMedCrossRefGoogle Scholar
  12. 12.
    Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B. and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee, T. I., Jenner, R. G., Boyer, L. A., Guenther, M. G., Levine, S. S., Kumar, R. M., Chevalier, B., Johnstone, S. E., Cole, M. F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H. L., Zucker, J. P., Yuan, B., Bell, G. W., Herbolsheimer, E., Hannett, N. M., Sun, K., Odom, D. T., Otte, A. P., Volkert, T. L., Bartel, D. P., Melton, D. A., Gifford, D. K., Jaenisch, R. and Young, R. A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.PubMedCrossRefGoogle Scholar
  14. 14.
    Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. and Young, R. A. (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88.PubMedCrossRefGoogle Scholar
  15. 15.
    Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R. and Farnham, P. J. (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43, 791–797.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., Orlov, Y. L., Sung, W. K., Shahab, A., Kuznetsov, V. A., Bourque, G., Oh, S., Ruan, Y., Ng, H. H. and Wei, C. L. (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298.PubMedCrossRefGoogle Scholar
  17. 17.
    O'Neill, L. P. and Turner, B. M. (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Hudson, M. E. and Snyder, M. (2006) High-throughput methods of regulatory element discovery. Biotechniques 41, 673, 675, 677.PubMedCrossRefGoogle Scholar
  19. 19.
    Dunn, J. J., McCorkle, S. R., Everett, L. and Anderson, C. W. (2007) Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes. Genet. Eng. (NY) 28, 159–173.CrossRefGoogle Scholar
  20. 20.
    Aiba, K., Carter, M. G., Matoba, R. and Ko, M. S. (2006) Genomic approaches to early embryogenesis and stem cell biology. Semin. Reprod. Med. 24, 330–339.PubMedCrossRefGoogle Scholar
  21. 21.
    Clark, D. J. and Shen, C. H. (2006) Mapping histone modifications by nucleosome immunoprecipitation. Methods Enzymol. 410, 416–430.PubMedCrossRefGoogle Scholar
  22. 22.
    Negre, N., Lavrov, S., Hennetin, J., Bellis, M. and Cavalli, G. (2006) Mapping the distribution of chromatin proteins by ChIP on chip. Methods Enzymol. 410, 316–341.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, J., Smith, L. T., Plass, C. and Huang, T. H. (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 66, 6899–6902.PubMedCrossRefGoogle Scholar
  24. 24.
    Bulyk, M. L. (2006) DNA microarray technologies for measuring protein–DNA interactions. Curr. Opin. Biotechnol. 17, 422–430.PubMedCrossRefGoogle Scholar
  25. 25.
    O'Geen, H., Nicolet, C. M., Blahnik, K., Green, R. and Farnham, P. J. (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41, 577–580.PubMedCrossRefGoogle Scholar
  26. 26.
    Nelson, J. D., Denisenko, O. and Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179–185.PubMedCrossRefGoogle Scholar
  27. 27.
    Flanagin, S., Nelson, J. D., Castner, D. G., Denisenko, O. and Bomsztyk, K. (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res. 36, e17.PubMedCrossRefGoogle Scholar
  28. 28.
    Dahl, J. A. and Collas, P. (2008) MicroChIP – A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 36, e15.PubMedCrossRefGoogle Scholar
  29. 29.
    Dahl, J. A. and Collas, P. (2008) A rapid micro chromatin immunoprecipitation assay (μChIP). Nat. Protoc. 3, 1032–1045.PubMedCrossRefGoogle Scholar
  30. 30.
    Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John Arne Dahl
    • 1
  • Philippe Collas
    • 1
  1. 1.Department of BiochemistryInstitute of Basic Medical Sciences, University of OsloOsloNorway

Personalised recommendations