Immunoprecipitation of Methylated DNA

  • Anita L. Sørensen
  • Philippe Collas
Part of the Methods in Molecular Biology book series (MIMB, volume 567)


DNA methylation contributes to the regulation of long-term gene repression by enabling the recruitment of transcriptional repressor complexes to methylated cytosines. Several methods for detecting DNA methylation at the gene-specific and genome-wide levels have been developed. Methylated DNA immunoprecipitation, or MeDIP, consists of the selective immunoprecipitation of methylated DNA fragments using antibodies to 5-methylcytosine. The genomic site of interest can be detected by PCR, hybridization to DNA arrays, or by direct sequencing. This chapter describes the MeDIP protocol and quality control tests that should be performed throughout the procedure.

Key words

DNA methylation immunoprecipitation 5-methylcytosine antibody microarray 



The basis for this MeDIP protocol has been the procedure established in Dirk Schübeler’s laboratory (Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland) by Michaël Weber and Dirk Schübeler and posted on the Epigenome Network of Excellence website ( We are also grateful to Dirk Schübeler for discussion and advice. Our work is supported by the Research Council of Norway.


  1. 1.
    Jones, P. A. and Takai, D. (2001) The role of DNA methylation in mammalian epigenetics. Science 293, 1068–1070.PubMedCrossRefGoogle Scholar
  2. 2.
    Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 Suppl, 245–254.PubMedCrossRefGoogle Scholar
  3. 3.
    Turek-Plewa, J. and Jagodzinski, P. P. (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10, 631–647.PubMedGoogle Scholar
  4. 4.
    Rai, K., Chidester, S., Zavala, C. V., Manos, E. J., James, S. R., Karpf, A. R., Jones, D. A. and Cairns, B. R. (2007) Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 21, 261–266.PubMedCrossRefGoogle Scholar
  5. 5.
    Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E. and Bestor, T. H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395–398.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoffman, A. R. and Hu, J. F. (2006) Directing DNA methylation to inhibit gene expression. Cell Mol. Neurobiol. 26, 425–438.PubMedCrossRefGoogle Scholar
  7. 7.
    Klose, R. J. and Bird, A. P. (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Morgan, H. D., Santos, F., Green, K., Dean, W. and Reik, W. (2005) Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.PubMedCrossRefGoogle Scholar
  9. 9.
    Young, L. E. and Beaujean, N. (2004) DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim. Reprod. Sci. 82, 61–78.PubMedCrossRefGoogle Scholar
  10. 10.
    Mann, J. R. (2001) Imprinting in the germ line. Stem Cells 19, 287–294.PubMedCrossRefGoogle Scholar
  11. 11.
    Razin, A. and Shemer, R. (1995) DNA methylation in early development. Hum. Mol. Genet. 4, 1751–1755.PubMedGoogle Scholar
  12. 12.
    Hellman, A. and Chess, A. (2007) Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143.PubMedCrossRefGoogle Scholar
  13. 13.
    Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M. and Bartolomei, M. S. (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat. Genet. 9, 407–413.PubMedCrossRefGoogle Scholar
  14. 14.
    Sapienza, C., Peterson, A. C., Rossant, J. and Balling, R. (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328, 251–254.PubMedCrossRefGoogle Scholar
  15. 15.
    Reik, W., Collick, A., Norris, M. L., Barton, S. C. and Surani, M. A. (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248–251.PubMedCrossRefGoogle Scholar
  16. 16.
    Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M. and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466.PubMedCrossRefGoogle Scholar
  17. 17.
    Clark, S. J., Statham, A., Stirzaker, C., Molloy, P. L. and Frommer, M. (2006) DNA methylation: bisulphite modification and analysis. Nat. Protoc. 1, 2353–2364.PubMedCrossRefGoogle Scholar
  18. 18.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L. and Schubeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862.PubMedCrossRefGoogle Scholar
  19. 19.
    Zilberman, D. and Henikoff, S. (2007) Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965.PubMedCrossRefGoogle Scholar
  20. 20.
    Jacinto, F. V., Ballestar, E. and Esteller, M. (2008) Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44, 35, 37, 39.PubMedCrossRefGoogle Scholar
  21. 21.
    Penterman, J., Zilberman, D., Huh, J. H., Ballinger, T., Henikoff, S. and Fischer, R. L. (2007) DNA demethylation in the Arabidopsis genome. Proc. Natl. Acad. Sci U. S. A 104, 6752–6757.PubMedCrossRefGoogle Scholar
  22. 22.
    Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Jacinto, F. V., Ballestar, E., Ropero, S. and Esteller, M. (2007) Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res. 67, 11481–11486.PubMedCrossRefGoogle Scholar
  24. 24.
    Boquest, A. C., Noer, A., Sorensen, A. L., Vekterud, K. and Collas, P. (2007) CpG methylation profiles of endothelial cell-specific gene promoter regions in adipose tissue stem cells suggest limited differentiation potential toward the endothelial cell lineage. Stem Cells 25, 852–861.PubMedCrossRefGoogle Scholar
  25. 25.
    Noer, A., Sørensen, A. L., Boquest, A. C. and Collas, P. (2006) Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured and differentiated mesenchymal stem cells from adipose tissue. Mol. Biol. Cell 17, 3543–3556.PubMedCrossRefGoogle Scholar
  26. 26.
    Noer, A., Boquest, A. C. and Collas, P. (2007) Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol. 8, 18–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T. K., Koche, R. P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E. S. and Bernstein, B. E. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.PubMedCrossRefGoogle Scholar
  28. 28.
    Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R. and Farnham, P. J. (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. Biotechniques 43, 791–797.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Anita L. Sørensen
    • 1
  • Philippe Collas
    • 1
  1. 1.Department of BiochemistryInstitute of Basic Medical Sciences, University of OsloOsloNorway

Personalised recommendations