Tracking the Secretion of Fluorescently Labeled Type III Effectors from Single Bacteria in Real Time

  • Nandi Simpson
  • Laurent Audry
  • Jost Enninga
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 619)

Abstract

A large number of Gram negative pathogens use a specialized needle-like molecular machine known as Type III Secretion (T3S) system. This highly sophisticated molecular device consists of a basal body spanning the two bacterial membranes and a protruding needle structure that is connected to a distal translocator complex. The main features of the T3S system are (i) activation after host cellular membrane contact and (ii) the ability to “inject” effectors into host cells through the needle apparatus across three membranous structures––two bacterial and one host cellular––without effector leakage into the exterior space. The effector proteins execute multiple roles upon translocation including re-arranging the host cytoskeleton, manipulating signaling pathways and reprogramming the host immune response. We have established a novel approach to monitor the secretion of fluorescently labeled effectors through the T3S system of single living bacteria in real time. Our approach uses the tetracysteine-FlAsH labeling procedure. Here, we provide a detailed protocol and advice on its potential and experimental pitfalls. Using the entero-invasive pathogen Shigella flexneri for assay development, we have also successfully adapted our approach and developed procedures for T3S effector tracking for other pathogens such as Enteropathogenic Escherichia coli (EPEC).

Key words

Type III secretion system translocation Shigella flexneri multidimensional imaging tetracysteine labeling 

References

  1. 1.
    Cornelis, G. R. (2006). The type III secretion injectisome. Nat Rev Microbiol, 4, 811–825.CrossRefPubMedGoogle Scholar
  2. 2.
    Rosqvist, R., Magnusson, K. E., and Wolf-Watz, H. (1994). Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J, 13, 964–972.PubMedGoogle Scholar
  3. 3.
    Troisfontaines, P., and Cornelis, G. R. (2005). Type III secretion: more systems than you think. Physiology (Bethesda), 20, 326–339.Google Scholar
  4. 4.
    Pallen, M. J., Penn, C. W., and Chaudhuri, R. R. (2005). Bacterial flagellar diversity in the post-genomic era. Trends Microbiol, 13, 143–149.CrossRefPubMedGoogle Scholar
  5. 5.
    Journet, L., Agrain, C., Broz, P., and Cornelis, G. R. (2003). The needle length of bacterial injectisomes is determined by a molecular ruler. Science, 302, 1757–1760.CrossRefPubMedGoogle Scholar
  6. 6.
    Blocker, A. J., Deane, J. E., Veenendaal, A. K., Roversi, P., Hodgkinson, J. L., Johnson, S., and Lea, S. M. (2008). What’s the point of the type III secretion system needle? Proc Natl Acad Sci USA, 105, 6507–6513.CrossRefPubMedGoogle Scholar
  7. 7.
    Woestyn, S., Allaoui, A., Wattiau, P., and Cornelis, G. R. (1994). YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol, 176, 1561–1569.PubMedGoogle Scholar
  8. 8.
    Galan, J. E. Energizing type III secretion machines: what is the fuel? Nat Struct Mol Biol 2008, 15, 127–128.CrossRefPubMedGoogle Scholar
  9. 9.
    Sory, M. P., and Cornelis, G. R. (1994). Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol, 14, 583–594.CrossRefPubMedGoogle Scholar
  10. 10.
    Day, J. B., Ferracci, F., and Plano, G. V. (2003). Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol Microbiol, 47, 807–823.CrossRefPubMedGoogle Scholar
  11. 11.
    Briones, G., Hofreuter, D., and Galan, J. E. (2006). Cre reporter system to monitor the translocation of type III secreted proteins into host cells. Infect Immun, 74, 1084–1090.CrossRefPubMedGoogle Scholar
  12. 12.
    Charpentier, X., and Oswald, E. (2004). Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol, 186, 5486–5495.CrossRefPubMedGoogle Scholar
  13. 13.
    Mills, E., Baruch, K., Charpentier, X., Kobi, S., and Rosenshine, I. (2008). Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe, 3, 104–113.CrossRefPubMedGoogle Scholar
  14. 14.
    Schlumberger, M. C., Muller, A. J., Ehrbar, K., Winnen, B., Duss, I., Stecher, B., and Hardt, W. D. (2005). Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci USA, 102, 12548–12553.CrossRefPubMedGoogle Scholar
  15. 15.
    Griffin, B. A., Adams, S. R., and Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science, 281, 269–272.CrossRefPubMedGoogle Scholar
  16. 16.
    Gaietta, G., Deerinck, T. J., Adams, S. R., Bouwer, J., Tour, O., Laird, D. W., Sosinsky, G. E., Tsien, R. Y., and Ellisman, M. H. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science, 296, 503–507.CrossRefPubMedGoogle Scholar
  17. 17.
    Adams, S. R., Campbell, R. E., Gross, L. A., Martin, B. R., Walkup, G. K., Yao, Y., Llopis, J., and Tsien, R. Y. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc, 124, 6063–6076.CrossRefPubMedGoogle Scholar
  18. 18.
    Ignatova, Z., and Gierasch, L. M. (2004). Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA, 101, 523–528.CrossRefPubMedGoogle Scholar
  19. 19.
    Enninga, J., Mounier, J., Sansonetti, P., and Tran Van Nhieu, G. (2005). Secretion of type III effectors into host cells in real time. Nat Methods, 2, 959–965.CrossRefPubMedGoogle Scholar
  20. 20.
    Jaumouille, V., Francetic, O., Sansonetti, P. J., and Tran Van Nhieu, G. (2008). Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J, 27, 447–457.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Engelenburg, S. B., and Palmer, A. E. (2008). Quantification of real-time Salmonella effector type III secretion kinetics reveals differential secretion rates for SopE2 and SptP. Chem Biol, 15, 619–628.CrossRefPubMedGoogle Scholar
  22. 22.
    Clerc, P. L., Ryter, A., Mounier, J., and Sansonetti, P. J. (1987). Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studied by infection of J774 macrophages. Infect Immun, 55, 521–527.PubMedGoogle Scholar
  23. 23.
    Menard, R., Sansonetti, P. J., and Parsot, C. (1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol, 175, 5899–5906.PubMedGoogle Scholar
  24. 24.
    Allaoui, A., Sansonetti, P. J., and Parsot, C. (1993). MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins. Mol Microbiol, 7, 59–68.CrossRefPubMedGoogle Scholar
  25. 25.
    Martin, B. R., Giepmans, B. N., Adams, S. R., and Tsien, R. Y. (2005). Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol, 23, 1308–1314.CrossRefPubMedGoogle Scholar
  26. 26.
    Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol, 177, 4121–4130.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nandi Simpson
    • 1
  • Laurent Audry
    • 2
  • Jost Enninga
    • 2
  1. 1.Institut CochinUniversite Paris DescartesU567ParisFrance
  2. 2.Institut PasteurGroupe “Dynamique des interactions hôte-pathogène”ParisFrance

Personalised recommendations