Advertisement

The TaqMan Method for SNP Genotyping

  • Gong-Qing Shen
  • Kalil G. Abdullah
  • Qing Kenneth Wang
Part of the Methods in Molecular Biology™ book series (MIMB, volume 578)

Abstract

Single nucleotide polymorphisms (SNPs) are common DNA sequence variations that occur at single bases within the genome. SNPs have been instrumental in elucidating the genetic basis of common, complex diseases using genome-wide association studies, candidate gene case-control association studies, and genome-wide linkage analyses. A key to these studies is genotyping of SNPs. Various methods for SNP genotyping have been developed. For a particular genotyping project, the choice of method is dependent on the number of SNPs (n) and the number of DNA samples (m) to be genotyped. For a genome-wide or large-scale project with very high n and small m, the Affymetrix SNP GeneChip and Illumina GoldenGate BeadChips assays are the ideal methods. For a project involving a small number of SNPs (small n) and a large population (high m), the TaqMan assay is the preferred technology as it has high throughput and is highly accurate, precise, time-efficient, and cost-effective. Here, we describe the detailed procedures for TaqMan SNP genotyping assay, including preparation of high-quality DNA samples, the operating protocol, clarification of technical issues, and discussion of several cautionary notes.

Key words

Single nucleotide polymorphisms TaqMan genotyping case-control association study genome-wide association study genetic variation susceptibility gene 

Notes

Acknowledgments

This work was supported by NIH grants R01 HL66251, P50 HL77107, and P50 HL81011, and an American Heart Association Established Investigator award (to Q.K.W.). K.G.A. was supported by a seed grant award from the American Medical Association Foundation and funding from the Cleveland Clinic Lerner College of Medicine.

References

  1. 1.
    Wang, Q. (2005) Molecular genetics of coronary artery disease. Curr. Opin. Cardiol. 20, 182–188.PubMedCrossRefGoogle Scholar
  2. 2.
    Topol, E. J., Smith, J., Plow, E. F. and Wang, Q. K. (2006) Genetic susceptibility to myocardial infarction and coronary artery disease. Hum. Mol. Genet. 15, R117–R123.PubMedCrossRefGoogle Scholar
  3. 3.
    Shore, S. A. (2008) Obesity and asthma: possible mechanisms. J. Allergy Clin. Immunol. 121, 1087–1093.PubMedCrossRefGoogle Scholar
  4. 4.
    Joy, T., Lahiry, P., Pollex, R. L. and Hegele, R. A. (2008) Genetics of metabolic syndrome. Curr. Diab. Rep. 8, 141–148.PubMedCrossRefGoogle Scholar
  5. 5.
    Brookes, A. J. (1999) The essence of SNPs. Gene. 234, 177–186.PubMedCrossRefGoogle Scholar
  6. 6.
    Hemminki, K. and Bermejo, J. L. (2005) Relationships between familial risks of cancer and the effects of heritable genes and their SNP variants. Mutat. Res. 592, 6–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamada, R. (2008) Primer: SNP-associated studies and what they can teach us. Nat. Clin. Pract. Rheumatol. 4, 210–217.PubMedCrossRefGoogle Scholar
  8. 8.
    Suh, Y. and Vijg, J. (2005) SNP discovery in associating genetic variation with human disease phenotypes. Mutat Res. 573, 41–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson, J. L., Carlguist, J. F., Horne, B. D. and Hopkins, P. N. (2007) Progress in unraveling the genetics of coronary artery disease and myocardial infarction. Curr. Atheroscler. Rep. 9, 179–186.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, L., Luhm, R. and Lei, M. (2007) SNP and mutation analysis. Adv. Exp. Med. Biol. 593, 105–116.PubMedCrossRefGoogle Scholar
  11. 11.
    Topol, E. J., McCarthy, J., Gabriel, S., Moliterno, D. J., Rogers, W., Newby, L. K. et al. (2001) Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 104, 2641–2644.PubMedCrossRefGoogle Scholar
  12. 12.
    Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T. et al. (2002) Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654.PubMedCrossRefGoogle Scholar
  13. 13.
    Helgadottir, A., Manolescu, A., Thorleifsson, G., Gretarsdottir, S., Jonsdottir, H., Thorsteinsdottir, U. et al. (2004) The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat. Genet. 36, 233–239.PubMedCrossRefGoogle Scholar
  14. 14.
    Connelly, J. J., Wang, T., Cox, J. E., Haynes, C., Wang, L., Shah, S. H. et al. (2006) GATA2 is associated with familial early-onset coronary artery disease. PloS Genet. 2, e139.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang, L., Hauser, E. R., Shah, S. H., Pericak-Vance, M. A., Haynes, C., Crosslin, D. et al. (2007) Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease. Am. J. Hum. Genet. 80, 650–663.PubMedCrossRefGoogle Scholar
  16. 16.
    Shen, G. Q., Li, L., Girelli, D., Seidelmann, S. B., Rao, S., Fan, C. et al. (2007) An LRP8 variant is associated with familial and premature coronary artery disease and myocardial infarction. Am. J. Hum. Genet. 81, 780–791.PubMedCrossRefGoogle Scholar
  17. 17.
    Bouatia-Naji, N., Rocheleau, G., Van Lommel, L., Lemaire, K., Schuit, F., Cavalcanti-Proenca, C. et al. (2008) A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320, 1085–1088.PubMedCrossRefGoogle Scholar
  18. 18.
    Sun, T., Gao, Y., Tan, W., Ma, S., Shi, Y., Yao, J. et al. (2007) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat. Genet. 39, 605–613.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu, G., Vestbo, J., Lenney, W., Silverman, M., Whyte, M., Helms, P. et al. (2007) Association of PTGDR gene polymorphisms with asthma in two Caucasian populations. Genes Immun. 8, 398–403.PubMedCrossRefGoogle Scholar
  20. 20.
    McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R. et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491.PubMedCrossRefGoogle Scholar
  21. 21.
    Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A. et al. (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493.PubMedCrossRefGoogle Scholar
  22. 22.
    Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I., Chen, H. et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336.PubMedCrossRefGoogle Scholar
  23. 23.
    Shojaee, S., Sina, F., Banihosseini, S. S., Kazemi, M. H., Kalhor, R., Shahidi, G.-A. et al. (2008) Genome-wide linkage analysis of a parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet. 82, 1375–1384.PubMedCrossRefGoogle Scholar
  24. 24.
    Shen, G. Q., Li, L., Rao, S., Abdullah, K. G., Ban, J. M., Lee, B. S. et al. (2008) Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 28, 360–365.PubMedCrossRefGoogle Scholar
  25. 25.
    Shen, G. Q., Rao, S., Martinelli, N., Li, L., Olivieri, O., Corrocher, R. et al. (2008) Association between four SNPs on chromosome 9p21 and myocardial infarction is replicated in an Italian population. J. Hum. Genet. 53, 144–150.PubMedCrossRefGoogle Scholar
  26. 26.
    Abdullah, K. G., Li, L., Shen, G. Q., Hu, Y., Yang, Y., Mackinlay, K. G. et al. (2008) Four SNPS on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population (GeneQuest). Ann. Hum. Genet. 72, 654–657.PubMedCrossRefGoogle Scholar
  27. 27.
    Assimes, T. L., Knowles, J. W., Basu, A., Iribarren, C., Southwick, A., Tang, H. et al. (2008) Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study. Hum. Mol. Genet. 17, 2320–2328.PubMedCrossRefGoogle Scholar
  28. 28.
    Jenkins, S. and Gibson, N. (2002) High-throughput SNP genotyping. Comp. Funct. Genom. 3, 57–66.CrossRefGoogle Scholar
  29. 29.
    Tsuchihashi, Z. and Dracopoli, N. C. (2002) Progress in high throughput SNP genotyping methods. Pharmacogenomics J. 2, 103–110.PubMedCrossRefGoogle Scholar
  30. 30.
    Dearlove, A. M. (2002) High throughput genotyping technologies. Brief Funct. Genomic Proteomic. 1, 139–150.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohnishi, Y. (2002) A high-throughput SNP typing system for genome-wide association studies. Gan To Kagaku Ryoho. 29, 2031–2036.PubMedGoogle Scholar
  32. 32.
    Shen, G. Q., Luo, A. and Wang, Q. K. (2006) High-throughput single-nucleotide polymorphisms genotyping: TaqMan assay and pyrosequencing assay. Methods Mol. Med. 128, 209–224.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, J. E. (2007) High-throughput genotyping. Forum Nutr. 60, 97–101.PubMedCrossRefGoogle Scholar
  34. 34.
    Hampe, J., Wollstein, A., Lu, T., Frevel, H. J., Will, M., Manaster, C. et al. (2001) An integrated system for high throughput TaqMan based SNP genotyping. Bioinformatics 17, 654–655.PubMedCrossRefGoogle Scholar
  35. 35.
    Giles, J., Hardick, J., Yuenger, J., Dan, M., Reich, K. and Zenilman, J. (2004) Use of applied biosystems 7900HT sequence detection system and Taqman assay for detection of quinolone-resistant Neisseria gonorrhoeae. J. Clin. Microbiol. 42, 3281–3283.PubMedCrossRefGoogle Scholar
  36. 36.
    Borodina, T. A., Lehrach, H. and Soldatov, A. V. (2004) Ligation detection reaction-TaqMan procedure for single nucleotide polymorphism detection on genomic DNA. Anal. Biochem. 333, 309–319.PubMedCrossRefGoogle Scholar
  37. 37.
    Holland, P. M., Abramson, R. D., Watson, R. and Gelfand, D. H. (1991) Detection of specific polymerase chain reaction product by utilizing the 5’–3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 88, 7276–7280.PubMedCrossRefGoogle Scholar
  38. 38.
    Livak, K. J. (2003) SNP genotyping by the 5′-nuclease reaction. Methods Mol. Biol. 212, 129–147.PubMedGoogle Scholar
  39. 39.
    McGuigan, F. E. and Ralston, S. H. (2002) Single nucleotide polymorphism detection: allelic discrimination using TaqMan. Psychiatr. Genet. 12, 133–136.PubMedCrossRefGoogle Scholar
  40. 40.
    Ranade, K., Chang, M. S., Ting, C. T., Pei, D., Hsiao, C. F., Olivier, M. et al. (2001) High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 11, 1262–1268.PubMedGoogle Scholar
  41. 41.
    Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5’ nuclease assay. Genet. Anal. 14, 143–149.PubMedCrossRefGoogle Scholar
  42. 42.
    Hui, L., DelMonte, T. and Ranade, K. (2008) Genotyping using the TaqMan assay. Curr. Protoc. Hum. Genet. Chapter 2: Unit 2.10.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2003 2009

Authors and Affiliations

  • Gong-Qing Shen
    • 1
  • Kalil G. Abdullah
    • 1
  • Qing Kenneth Wang
    • 2
    • 3
  1. 1.Department of Molecular Cardiology, Lerner Research InstituteCleveland ClinicClevelandUSA
  2. 2.Center for Cardiovascular Genetics, Department of Cardiovascular MedicineCleveland ClinicClevelandUSA
  3. 3.Department of Molecular MedicineCleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandUSA

Personalised recommendations