High-Throughput SNP Genotyping: Combining Tag SNPs and Molecular Beacons

  • Luis B. Barreiro
  • Ricardo Henriques
  • Musa M. Mhlanga
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 578)

Abstract

In the last decade, molecular beacons have emerged to become a widely used tool in the multiplex typing of single nucleotide polymorphisms (SNPs). Improvements in detection technologies in instrumentation and chemistries to label these probes have made it possible to use up to six spectrally distinguishable probes per reaction well. With the remarkable advances made in the characterization of human genome diversity, it has been possible to describe empirical patterns of SNPs and haplotype variation in the genome of diverse human populations. These patterns have revealed that the human genome is structured in blocks of strong linkage disequilibrium (LD). Because SNPs tend to be in LD with each other, common haplotypes share common SNPs and thus the majority of the diversity in a region can be characterized by typing a very small number of SNPs; so-called tag SNPs. Herein lies the advantage of the multiplexing ability of molecular beacons, since it becomes possible to use as few as 30 probes to interrogate several haplotypes in a high-throughput approach. Thus, through the combined use of tag SNPs and molecular beacons it becomes possible to type individuals for clinically relevant haplotypes in a high-throughput manner at a cost that is orders of magnitude less than that for high throughput sequencing methods.

Key words

Linkage disequilibrium single nucleotide polymorphism tagging single nucleotide polymorphisms DC-SIGN Mycobacterium tuberculosis molecular beacons real-time PCR 

References

  1. 1.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308.PubMedCrossRefGoogle Scholar
  2. 2.
    Tyagi, S. (2000) DNA Probes, In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation (Meyers, R. A., Ed.) John Wiley & Sons Ltd. Chichester, UK, Vol. 6, pp. 4911.Google Scholar
  3. 3.
    Lander, E. S., Linton, L. M., Birren, B. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.PubMedCrossRefGoogle Scholar
  4. 4.
    Sachidanandam, R., Weissman, D., Schmidt, S. C. et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933.PubMedCrossRefGoogle Scholar
  5. 5.
    Hinds, D. A., Stuve, L. L., Nilsen, G. B. et al. (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller, R. D., Phillips, M. S., Jo, I. et al. (2005) High-density single-nucleotide polymorphism maps of the human genome. Genomics 86, 117–126.PubMedCrossRefGoogle Scholar
  7. 7.
    Kruglyak, L. and Nickerson, D. A. (2001) Variation is the spice of life. Nat. Genet. 27, 234–236.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller, R. D. and Kwok, P. Y. (2001) The birth and death of human single-nucleotide polymorphisms: new experimental evidence and implications for human history and medicine. Hum. Mol. Genet. 10, 2195–2198.PubMedCrossRefGoogle Scholar
  9. 9.
    Crawford, D. C., Akey, D. T. and Nickerson, D. A. (2005) The patterns of natural variation in human genes. Annu. Rev. Genomics Hum. Genet. 6, 287–312.PubMedCrossRefGoogle Scholar
  10. 10.
    Consortium TIH. (2003) The International HapMap Project. Nature 426, 789–796.CrossRefGoogle Scholar
  11. 11.
    Consortium TIH. (2005) A haplotype map of the human genome. Nature 437, 1299–1320.CrossRefGoogle Scholar
  12. 12.
    Frazer, K. A., Ballinger, D. G., Cox, D. R. et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861.PubMedCrossRefGoogle Scholar
  13. 13.
    Conrad, D. F., Jakobsson, M., Coop, G. et al. (2006) A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38, 1251–1260.PubMedCrossRefGoogle Scholar
  14. 14.
    Gonzalez-Neira, A., Ke, X., Lao, O. et al. (2006) The portability of tagSNPs across populations: a worldwide survey. Genome Res. 16, 323–330.PubMedCrossRefGoogle Scholar
  15. 15.
    Eberle, M. A., Ng, P. C., Kuhn, K. et al. (2007) Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 3, 1827–1837.PubMedCrossRefGoogle Scholar
  16. 16.
    Consortium TWTCC. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678.CrossRefGoogle Scholar
  17. 17.
    Todd, J. A., Walker, N. M., Cooper, J. D. et al. (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864.PubMedCrossRefGoogle Scholar
  18. 18.
    Saxena, R., Voight, B. F., Lyssenko, V. et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336.PubMedCrossRefGoogle Scholar
  19. 19.
    Zeggini, E., Weedon, M. N., Lindgren, C. M. et al. (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341.PubMedCrossRefGoogle Scholar
  20. 20.
    Samani, N. J., Erdmann, J., Hall, A. S. et al. (2007) Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453.PubMedCrossRefGoogle Scholar
  21. 21.
    Frayling, T. M., Timpson, N. J., Weedon, M. N. et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894.PubMedCrossRefGoogle Scholar
  22. 22.
    Scuteri, A., Sanna, S., Chen, W. M. et al. (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomson, W., Barton, A., Ke, X. et al. (2007) Rheumatoid arthritis association at 6q23. Nat Genet 39, 1431–1433.PubMedCrossRefGoogle Scholar
  24. 24.
    Fellay, J., Shianna, K. V., Ge, D. et al. (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947.PubMedCrossRefGoogle Scholar
  25. 25.
    Leone, G., van Schijndel, H., van Gemen, B., Kramer, F. R. and Schoen, C. D. (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 26, 2150–2155.PubMedCrossRefGoogle Scholar
  26. 26.
    Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149.PubMedCrossRefGoogle Scholar
  27. 27.
    Tyagi, S., Bratu, D. P. and Kramer, F. R. (1998) Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53.PubMedCrossRefGoogle Scholar
  28. 28.
    El-Hajj, H. H., Marras, S. A., Tyagi, S., Kramer, F. R. and Alland, D. (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J. Clin. Microbiol. 39, 4131–4137.PubMedCrossRefGoogle Scholar
  29. 29.
    Marras, S. A., Kramer, F. R. and Tyagi, S. (2003) Genotyping SNPs with molecular beacons. Methods Mol. Biol. 212, 111–128.PubMedGoogle Scholar
  30. 30.
    Vet, J. A., Majithia, A. R., Marras, S. A. et al. (1999) Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc. Natl. Acad. Sci. U.S.A. 96, 6394–6399.PubMedCrossRefGoogle Scholar
  31. 31.
    Kostrikis, L. G., Tyagi, S., Mhlanga, M. M., Ho, D. D. and Kramer, F. R. (1998) Spectral genotyping of human alleles. Science 279, 1228–1229.PubMedCrossRefGoogle Scholar
  32. 32.
    Mhlanga, M. M. and Malmberg, L. (2001) Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods 25, 463–471.PubMedCrossRefGoogle Scholar
  33. 33.
    Bratu, D. P., Cha, B. J., Mhlanga, M. M., Kramer, F.R. and Tyagi, S. (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. U.S.A. 100, 13308–13313.PubMedCrossRefGoogle Scholar
  34. 34.
    Mhlanga, M. M., Vargas, D. Y., Fung, C. W., Kramer, F. R. and Tyagi, S. (2005) tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Res. 33, 1902–1912.PubMedCrossRefGoogle Scholar
  35. 35.
    Tyagi, S. and Alsmadi, O. (2004) Imaging native beta-actin mRNA in motile fibroblasts. Biophys. J. 87, 4153–4162.PubMedCrossRefGoogle Scholar
  36. 36.
    Vargas, D. Y., Raj, A., Marras, S. A., Kramer, F. R. and Tyagi, S. (2005) Mechanism of mRNA transport in the nucleus. Proc. Natl. Acad. Sci. U.S.A. 102, 17008–17013.PubMedCrossRefGoogle Scholar
  37. 37.
    Bonnet, G., Tyagi, S., Libchaber, A. and Kramer, F. R. (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. U.S.A. 96, 6171–6176.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, L. G., Livak, K. J., Mullah, B., Graham, R. J., Vinayak, R.S. and Woudenberg T. M. (1999) Seven-color, homogeneous detection of six PCR products. Biotechniques 27, 342–349.PubMedGoogle Scholar
  39. 39.
    Marras, S. A. (2008) Interactive fluorophore and quencher pairs for labeling fluorescent nucleic acid hybridization probes. Mol. Biotechnol. 38, 247–255.PubMedCrossRefGoogle Scholar
  40. 40.
    Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. and Lander, E. S. (2001) High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232.PubMedCrossRefGoogle Scholar
  41. 41.
    Dawson, E., Abecasis, G. R., Bumpstead, S. et al. (2002) A first-generation linkage disequilibrium map of human chromosome 22. Nature 418, 544–548.PubMedCrossRefGoogle Scholar
  42. 42.
    Gabriel, S. B., Schaffner, S. F., Nguyen, H. et al. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.PubMedCrossRefGoogle Scholar
  43. 43.
    Reich, D. E., Cargill, M., Bolk, S. et al. (2001) Linkage disequilibrium in the human genome. Nature 411, 199–204.PubMedCrossRefGoogle Scholar
  44. 44.
    Zelensky, A. N. and Gready, J. E. (2005) The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217.PubMedCrossRefGoogle Scholar
  45. 45.
    Soilleux, E. J. (2003) DC-SIGN (dendritic cell-specific ICAM-grabbing non-integrin) and DC-SIGN-related (DC-SIGNR): friend or foe? Clin. Sci. (Lond) 104, 437–446.CrossRefGoogle Scholar
  46. 46.
    Curtis, B. M., Scharnowske, S. and Watson, A. J. (1992) Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl. Acad. Sci. U. S. A. 89, 8356–8360.PubMedCrossRefGoogle Scholar
  47. 47.
    Geijtenbeek, T. B., Kwon, D. S., Torensma, R. et al. (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597.PubMedCrossRefGoogle Scholar
  48. 48.
    Geijtenbeek, T. B., van Vliet, S. J., Engering, A., Hart, B. A. and van Kooyk, Y. (2004) Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Alvarez, C. P., Lasala, F., Carrillo, J., Muniz, O., Corbi, A. L. and Delgado, R. (2002) C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844.PubMedCrossRefGoogle Scholar
  50. 50.
    Appelmelk, B. J., van Die, I., van Vliet, S. J., Vandenbroucke-Grauls, C. M., Geijtenbeek, T. B. and van Kooyk, Y. (2003) Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635–1639.PubMedGoogle Scholar
  51. 51.
    Barreiro, L. B., Quach, H., Krahenbuhl, J. et al. (2006) DC-SIGN interacts with Mycobacterium leprae but sequence variation in this lectin is not associated with leprosy in the Pakistani population. Hum. Immunol. 67, 102–107.PubMedCrossRefGoogle Scholar
  52. 52.
    Bergman, M. P., Engering, A., Smits, H. H. et al. (2004) Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 200, 979–990.PubMedCrossRefGoogle Scholar
  53. 53.
    Colmenares, M., Puig-Kroger, A., Pello, O. M., Corbi, A. L. and Rivas L. (2002) Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J. Biol. Chem. 277, 36766–36769.PubMedCrossRefGoogle Scholar
  54. 54.
    Geijtenbeek, T. B., Van Vliet, S. J., Koppel, E. A. et al. (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17.PubMedCrossRefGoogle Scholar
  55. 55.
    Halary, F., Amara, A., Lortat-Jacob, H. et al. (2002) Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664.PubMedCrossRefGoogle Scholar
  56. 56.
    Lozach, P. Y., Lortat-Jacob, H., de Lacroix de Lavalette, A. et al. (2003) DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 278, 20358–20366.PubMedCrossRefGoogle Scholar
  57. 57.
    Marzi, A., Gramberg, T., Simmons, G. et al. (2004) DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 78, 12090–12095.PubMedCrossRefGoogle Scholar
  58. 58.
    Tailleux, L., Schwartz, O., Herrmann, J. L. et al. (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127.PubMedCrossRefGoogle Scholar
  59. 59.
    Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A. et al. (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829.PubMedCrossRefGoogle Scholar
  60. 60.
    Martin, M. P., Lederman, M. M., Hutcheson, H. B. et al. (2004) Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J. Virol. 78, 14053–14056.Google Scholar
  61. 61.
    Sakuntabhai, A., Turbpaiboon, C., Casademont, I. et al. (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat. Genet. 37, 507–513.PubMedCrossRefGoogle Scholar
  62. 62.
    Mezger, M., Steffens, M., Semmler, C. et al. (2008) Investigation of promoter variations in dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN) (CD209) and their relevance for human cytomegalovirus reactivation and disease after allogeneic stem-cell transplantation. Clin. Microbiol. Infect. 14, 228–234.PubMedCrossRefGoogle Scholar
  63. 63.
    Barreiro, L. B., Neyrolles, O., Babb, C. L. et al. (2006) Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med. 3, e20.PubMedCrossRefGoogle Scholar
  64. 64.
    Stephens, M. and Donnelly, P. A. (2003) comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169.PubMedCrossRefGoogle Scholar
  65. 65.
    Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2003 2009

Authors and Affiliations

  • Luis B. Barreiro
    • 1
  • Ricardo Henriques
    • 2
  • Musa M. Mhlanga
    • 3
  1. 1.Department of Human GeneticsThe University of ChicagoChicagoUSA
  2. 2.Institute for Molecular Medicine, Faculty of Medicine of the University of LisbonGene Expression and Biophysics UnitLisbonPortugal
  3. 3.Gene Expression and Biophysics Unit, Institute for Molecular Medicine, Portugal and Gene Expression and Biophysics Group, CSIR BiosciencesPretoriaSouth Africa

Personalised recommendations