Advertisement

Estimation of SNP Allele Frequencies by SSCP Analysis of Pooled DNA

  • Tomoko Tahira
  • Yoji Kukita
  • Koichiro Higasa
  • Yuko Okazaki
  • Aki Yoshinaga
  • Kenshi Hayashi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 578)

Abstract

The single strand conformation polymorphism (SSCP) method is a sensitive technique used to detect subtle sequence differences in PCR-amplified DNA fragments as separated peaks in electrophoretic analysis. In this chapter, we focus on SSCP analysis for quantifying polymorphic alleles rather than scanning for mutations. Short fragments carrying single nucleotide polymorphisms are amplified from individual and pooled DNA samples, then the products are labeled with fluorescent dyes and analyzed by automated capillary electrophoresis under nondenaturing conditions. Dedicated software, QSNPlite, interprets trace data of the electrophoresis to identify alleles of individuals and quantify these alleles in the pool. The software can also incorporate sequencing data to assign alleles at the nucleotide level. The procedures described here are being used in association studies that compare allele frequencies between cases and controls to identify genes responsible for common diseases.

Key words

Allele frequency capillary electrophoresis pooled DNA single nucleotide polymorphism single strand conformation polymorphism 

Notes

Acknowledgments

This work was supported by KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas “Applied Genomics” and KAKENHI 18310131 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Sham, P., Bader, J. S., Craig I., O'Donovan, M. and Owen, M. (2002) DNA pooling: A tool for large-scale association studies. Nat. Rev. Genet. 3, 862–871.PubMedCrossRefGoogle Scholar
  2. 2.
    Orita, M., Suzuki, Y., Sekiya, T. and Hayashi, K. (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879.PubMedCrossRefGoogle Scholar
  3. 3.
    Kukita, Y., Tahira, T., Sommer, S. S. and Hayashi, K. (1997) SSCP analysis of long DNA fragments in low pH gel. Hum. Mutat. 10, 400–407.PubMedCrossRefGoogle Scholar
  4. 4.
    Inazuka, M., Tahira, T. and Hayashi, K. (1996) One-tube post-PCR fluorescent labeling of DNA fragments. Genome Res. 6, 551–557.PubMedCrossRefGoogle Scholar
  5. 5.
    Inazuka, M., Wenz, H. M., Sakabe, M., Tahira, T. and Hayashi, K. (1997) A streamlined mutation detection system: Multicolor post-PCR fluorescence labeling and single-strand conformational polymorphism analysis by capillary electrophoresis. Genome Res. 7, 1094–1103.PubMedGoogle Scholar
  6. 6.
    Sasaki, T., Tahira, T., Suzuki, A., Higasa, K., Kukita, Y., Baba, S. and Hayashi, K. (2001) Precise estimation of allele frequencies of single-nucleotide polymorphisms by a quantitative SSCP analysis of pooled DNA. Am. J. Hum. Genet. 68, 214–218.PubMedCrossRefGoogle Scholar
  7. 7.
    Higasa, K., Kukita, Y., Baba, S. and Hayashi K. (2002) Software for machine-independent quantitative interpretation of SSCP in capillary array electrophoresis (QUISCA). BioTechniques 33, 1342–1348.PubMedGoogle Scholar
  8. 8.
    Kukita, Y. and Hayashi, K. (2002) Multicolor post-PCR labeling of DNA fragments with fluorescent ddNTPs. BioTechniques 33, 502, 504, 506.PubMedGoogle Scholar
  9. 9.
    Kukita, Y., Higasa, K., Baba, S., Nakamura, M., Manago, S., Suzuki, A., Tahira, T. and Hayashi K. (2002) A single-strand conformation polymorphism method for the large-scale analysis of mutations/polymorphisms using capillary array electrophoresis. Electrophoresis 23, 2259–2266.PubMedCrossRefGoogle Scholar
  10. 10.
    Baba, S., Kukita, Y., Higasa, K., Tahira, T. and Hayashi, K. (2003) Single-stranded conformational polymorphism analysis using automated capillary array electrophoresis apparatuses. BioTechniques 34, 746–750.PubMedGoogle Scholar
  11. 11.
    Tahira, T., Okazaki, Y., Miura, K., Yoshinaga, A.,Masumoto, K., Higasa, K., Kukita, Y. and Hayashi, K. (2006) QSNPlite, a software system for quantitative analysis of SNPs based on capillary array SSCP analysis. Electrophoresis 27, 3869–3878.PubMedCrossRefGoogle Scholar
  12. 12.
    Ewing, B., Hillier, L., Wendl, M. C. and Green, P. (1998) Base-calling of automated sequencer traces using phred. I. accuracy assessment. Genome Res. 8, 175–185.PubMedGoogle Scholar
  13. 13.
    Nickerson, D. A., Tobe V. O. and Taylor S. L. (1997) PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745–2751.PubMedCrossRefGoogle Scholar
  14. 14.
    Kuhn, D. N., Borrone, J., Meerow, A. W., Motamayor, J. C., Brown, J. S. and Schnell, R. J. (2005) Single-strand conformation polymorphism analysis of candidate genes for reliable identification of alleles by capillary array electrophoresis. Electrophoresis 26, 112–125.PubMedCrossRefGoogle Scholar
  15. 15.
    Ren, J., Ulvik, A., Refsum, H. and Ueland, P. M. (1999) Applications of short-chain polydimethylacrylamide as sieving medium for the electrophoretic separation of DNA fragments and mutation analysis in uncoated capillaries. Anal. Biochem. 276, 188–194.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2003 2009

Authors and Affiliations

  • Tomoko Tahira
    • 1
  • Yoji Kukita
    • 1
  • Koichiro Higasa
    • 1
  • Yuko Okazaki
    • 1
  • Aki Yoshinaga
    • 1
  • Kenshi Hayashi
    • 1
  1. 1.Division of Genome AnalysisResearch Center for Genetic Information, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan

Personalised recommendations