Flow Cytometric Studies on Intracellular Drug Fluorescence

  • Awtar Krishan
Part of the Biological Methods book series (BM)


Flow cytometry has rapidly evolved from a technique for detecting and sorting cells on the basis of their DNA content or immunological markers into a useful tool for detection and quantitation of intracellular drug fluorescence (2,25,30,37). Recent studies have shown that intracellular content of fluorescent drugs can be rapidly quantitated on a cell-to-cell basis by this sophisticated analytical method. Thus, one can analyze intracellular drug transport (influx, efflux), retention, and/or binding, and correlate these parameters with effects on cellular metabolism and proliferation (21,22).


Drug Transport Soft Agar Assay Intracellular Fluorescence Forward Angle Light Scatter Semisynthetic Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bachur, N., Gordon, S., and Gree, M. V. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res., 38: 1745–1750, 1978.PubMedGoogle Scholar
  2. 2.
    Barlogie, B., Raber, M. N., Schumann, J., Johnson, T. S., Drewinko, B., Swartzendruber, D. E., Gohde, W., Andreeff, M., and Freireich, E. J. Flow cytometry in clinical cancer research. Cancer Res., 43: 3982–3997, 1983.PubMedGoogle Scholar
  3. 3.
    Beck, W. T., Mueller, T. J., and Tanzer, L. R. Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts (CCRF-CEM). Cancer Res., 39: 2070–2076, 1976.Google Scholar
  4. 4.
    Bertino, J. R. The mechanism of action of the folate antagonists in man. Cancer Res., 23: 1286–1306, 1963.PubMedGoogle Scholar
  5. 5.
    Bertino, J. R. “Rescue” techniques in cancer chemotherapy: Use of leucovorin and other agents after methotrexate treatment. Semin. Oncol., 4: 203–216, 1977.PubMedGoogle Scholar
  6. 6.
    Crooke, S. T. and Reich, S. D., eds. Anthracyclines: Current Status and New Developments. New York: Academic, 1980.Google Scholar
  7. 7.
    Dano, K. Active outward transport of daunomycin resistant Ehrlich ascites tumor cells. Biochem. Biophys. Acta, 323: 466–483, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Darzynkiewicz, Z., Rogers, A. W., Barnard, E. A., Wang, D., and Werkheiser, W. C. Autoradiography with tritiated methotrexate and the cellular distribution of folate reductase. Science, 151: 1528–1530, 1966.PubMedCrossRefGoogle Scholar
  9. 9.
    Durand, R. E. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res., 41: 3495–3498, 1981.PubMedGoogle Scholar
  10. 10.
    Durand, R. E. and Olive, P. L. Flow cytometry studies of intracellular adriamycin in single cells in vitro. Cancer Res., 41: 3489–3494, 1981.PubMedGoogle Scholar
  11. 11.
    Egorin, M., Hildebrand, R. C., Cimino, E. F., and Bachur, N. Cytofluorescence localization of adriamycin and daunomycin. Cancer Res., 34: 2243–2245, 1974.PubMedGoogle Scholar
  12. 12.
    Ganapathi, R. and Grabowski, D. Enhancement of sensitivity to adriamycin in resistant P388 leukemia by the calmodulin inhibitor tri-fluoperazine. Cancer Res., 43: 3696–3699, 1983.PubMedGoogle Scholar
  13. 13.
    Ganapathi, R., Reiter, W., and Krishan, A. Comparative studies on intracellular adriamycin levels and cytotoxicity in sensitive and resistant P388 leukemia cells. J. Natl. Cancer Inst., 68: 1027–1031, 1982.PubMedGoogle Scholar
  14. 14.
    Gapski, G. R., Whitely, J. M., Rader, J. J., Gramer, P. L., Henderson, G. B., Neef, V., and Huennekins, F. M. Synthesis of a fluorescent derivative of amethopterin. J. Med. Chem., 18: 526–528, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Garman, D. and Center, M. S. Alterations in cell surface membranes in Chinese hamster lung cell resistant to adriamycin. Biochem. Biophys. Res. Commun., 105: 157–163, 1982.PubMedCrossRefGoogle Scholar
  16. 16.
    Haber, D. A. and Schimke, R. T. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell, 26: 355–362, 1981.PubMedCrossRefGoogle Scholar
  17. 17.
    Inaba, M. and Johnson, R. K. Uptake and retention of adriamycin and daunorubicin by sensitive and anthracycline resistant sublines of P388 leukemia. Biochem. Parmacol., 27: 2123–2130, 1978.CrossRefGoogle Scholar
  18. 18.
    Juliano, R. L. and Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem. Biophys. Acta, 455: 152–162, 1976.PubMedCrossRefGoogle Scholar
  19. 19.
    Krishan, A. and Bourguignon, L. Y. W. Cell cycle phenothiazine effects on adriamycin transport. Cell Biol. Int. Rep., 8: 449–456, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Krishan, A. and Frei, E. III. Effect of adriamycin on the cell cycle traverse and kinetics of cultured human lymphoblasts. Cancer Res., 36: 143–150, 1976.PubMedGoogle Scholar
  21. 21.
    Krishan, A. and Ganapathi, R. Laser flow cytometry and cancer chemotherapy: Detection of intracellular anthracyclines for flow cytometry. J. Histochem. Cytochem., 27: 1655–1656, 1979.PubMedGoogle Scholar
  22. 22.
    Krishan, A. and Ganapathi, R. Laser flow cytometric studies on intercellular fluorescence of anthracyclines. Cancer Res., 40: 3895–3900, 1980.PubMedGoogle Scholar
  23. 23.
    Krishan, A., Ganapathi, R., and Israel, M. Effect of adriamycin and analogs on nuclear fluorescence of propidium iodide stained cells. Cancer Res., 38: 3656–3662, 1978.PubMedGoogle Scholar
  24. 24.
    Krishan, A., Israel, M., Modest, E. J., and Frei III, E. Differences in cellular uptake and cytofluorescence of adriamycin and N-trifluoro-acetyladriamycin-14-valerate. Cancer Res., 36: 2114–2116, 1976.Google Scholar
  25. 25.
    Krishan, A., Pitman, S. W., Tattersall, M. H. N., Paika, K. D., Smith, D. C., and Frei III, E. Flow microfluorometric patterns of human bone marrow and tumor cells in response to cancer chemotherapy. Cancer Res., 36: 3813–3820, 1976.PubMedGoogle Scholar
  26. 26.
    Krishan, A., Sauerteig, A., and Wellham, L. L. Flow cytometric studies on modulation of cellular adriamycin retention by phenothiazines. Cancer Res., 45: 1046–1051, 1985.PubMedGoogle Scholar
  27. 27.
    Kaufman, R. J., Bertino, J. R., and Schimke, R. T. Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. J. Biol. Chem., 253: 5852–5860, 1978.PubMedGoogle Scholar
  28. 28.
    Kaufman, R. J. and Schimke, R. T. Amplification and loss of dihydro-folate reductase genes in a Chinese hamster ovary cell line. Mol. Cell Biol., 1: 1069–1076, 1981.PubMedGoogle Scholar
  29. 29.
    Mariani, B. D., Slate, D. L., and Schimke, R. T. S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA, 78: 4985–4989, 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Melamed, M. R., Mullaney, P. F., and Mendelsohn, M. L., eds. Flow Cytometry and Sorting. New York: John Wiley, 1979.Google Scholar
  31. 31.
    Muirhead, K. A., Freyer, J. P., and Sutherland, R. M. Distribution of adriamycin within tumor spheroids. Cytometry, 2: 115, 1981.Google Scholar
  32. 32.
    Peters, D. C. A comparison of mercury arc lamp and laser illumination for flow cytometers. J. Histochem. Cytochem., 27: 241–245, 1979.PubMedGoogle Scholar
  33. 33.
    Preisler, H. D. Alteration of binding of the supravital Dye Hoechst 33342 to human leukemic cells by adriamycin. Cancer Treatment Rep., 62: 1393, 1978.Google Scholar
  34. 34.
    Raju, M. R., Johnson, T. S., Tokita, N., and Gillette, E. L. Flow cytometric applications to tumour biology: Prospects and pitfalls. Brit. J. Cancer, 41: 171–176, 1980.Google Scholar
  35. 35.
    Rosowsky, A., Wright, J. E., Shapiro, H., Beardsley, P., and Lazarus, H. A new fluorescent dihydrofolate reductase probe for studies of methotrexate resistance. J. Biol. Chem., 257: 14162–14167, 1982.PubMedGoogle Scholar
  36. 36.
    Rosowsky, A., personal communication.Google Scholar
  37. 37.
    Shapiro, H. M. Multistation multiparameter flow cytometry: A critical review and rationale. Cytometry, 3: 227–243, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Skogen-Hagenson, M. J., Salzman, G. C., Mullaney, P. F., and Brockman, W. H. A high efficiency flow cytometer. J. Histochem. Cytochem., 25: 784–789, 1977.PubMedGoogle Scholar
  39. 39.
    Skovsgaard, T. and Nissen, N. Adriamycin, an antitumour antibiotic: A review with special reference to daunomycin. Dan. Med. Bui., 22: 62–73, 1975.Google Scholar
  40. 40.
    Tapiero, H., Fourcade, A., Vaigot, P., and Farhi, J. J. Comparative uptake of adriamycin and daunorubicin in sensitive and resistant Friend leukemia cells measured by flow cytometry. Cytometry, 2: 298–302, 1982.PubMedCrossRefGoogle Scholar
  41. 41.
    Tokita, N. and Raju, M. R. Cell-cycle dependency of adriamycin uptake in Chinese hamster cells. Eur. J. Cancer Clin. Oncol., 19: 547, 1983.PubMedCrossRefGoogle Scholar
  42. 42.
    Tritton, T. R., Murphree, S. A., and Sartorelli, A. C. Adriamycin: A proposal on the specificity of drug action. Biochem. Biophys. Res. Commun., 84: 802–808, 1978.PubMedCrossRefGoogle Scholar
  43. 43.
    Tsuruo, T., Lida, H., Yamashiro, M., Tsukagoshi, S., and Sakurai, Y. Enhancement of vincristine-and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharmacol., 31: 3138–3140, 1982.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1987

Authors and Affiliations

  • Awtar Krishan
    • 1
  1. 1.Comprehensive Cancer Center and Department of OncologyUniversity of Miami Medical SchoolMiami

Personalised recommendations