Peptide Microarrays pp 309-316

Part of the Methods in Molecular Biology™ book series (MIMB, volume 570)

A Novel Combinatorial Approach to High-Density Peptide Arrays

  • Mario Beyer
  • Ines Block
  • Kai König
  • Alexander Nesterov
  • Simon Fernandez
  • Thomas Felgenhauer
  • Christopher Schirwitz
  • Klaus Leibe
  • Ralf F. Bischoff
  • Frank Breitling
  • Volker Stadler
Protocol

Abstract

Combinatorial synthesis of peptides on solid supports (1), either as spots on cellulose membranes (2) or with split-pool-libraries on polymer beads (3), substantially forwarded research in the field of peptide–protein interactions. Admittedly, these concepts have specific limitations, on one hand the number of synthesizable peptide sequences per area, on the other hand elaborate decoding/encoding strategies, false-positive results and sequence limitations. We recently established a method to produce high-density peptide arrays on microelectronic chips (4). Solid amino acid microparticles were charged by friction and transferred to defined pixel electrodes onto the chip’s surface, where they couple to a functional polymer coating simply upon melting (Fig. 16.1AD,F). By applying standard Fmoc chemistry according to Merrifield, peptide array densities of up to 40,000 spots per square centimetre were achieved (Fig. 16.1G). The term “Merrifield synthesis” describes the consecutive linear coupling and deprotecting of L-amino acids modified with base-labile fluorenylmethoxy (Fmoc) groups at the N-terminus and different acid-sensitive protecting groups at their side chains. Removing side chain protecting groups takes place only once at the very end of each synthesis and generates the natural peptide sequence thereby.

Key words

Solid-phase peptide synthesis peptide array combinatorial peptide libraries atom transfer radical polymerization (ATRP) amino acid microparticles peptide chips 

References

  1. 1.
    For a short historical summary: Kimmerlin, T., Seebach, D. (2005). “100 years of peptide synthesis”: ligation methods for peptide and protein synthesis with applications to ß-peptide assemblies. J. Pept. Res. 65(2), 229–260.PubMedCrossRefGoogle Scholar
  2. 2.
    Frank, R. (1992). Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232.CrossRefGoogle Scholar
  3. 3.
    Review: Lam, K. S., Lebl, M., Krchnak, V. (1997). The “One-Bead-One-Compound” Combinatorial Library Method. Chem. Rev. 97, 411–448.PubMedCrossRefGoogle Scholar
  4. 4.
    Beyer, M.,* Nesterov, A.,* Block, I., König, K., Felgenhauer, T., Fernandez, S., Leibe, K., Torralba, G., Hausmann, M., Trunk, U., Lindenstruth, V., Bischoff, F. R., ♦ Stadler, V., ♦ Breitling, F. ♦ (2007). Combinatorial Synthesis of Peptide Arrays onto a Microchip. Science 318, 1888. *, ♦: These authors contributed equally to this work.PubMedCrossRefGoogle Scholar
  5. 5.
    Stadler, V., Beyer, M., König, K., Nesterov, A., Torralba, G., Lindenstruth, V., Hausmann, M., Bischoff, F. R., Breitling, F. (2007). Multifunctional CMOS Microchip Coatings for Protein and Peptide Arrays. J. Proteome Res. 6, 3197–3202.PubMedCrossRefGoogle Scholar
  6. 6.
    Beyer, M., Felgenhauer, T., Bischoff, R. F., Breitling, F., Stadler, V. (2006). A novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption. Biomaterials 27(18), 3505–3514.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mario Beyer
    • 1
  • Ines Block
    • 1
  • Kai König
    • 1
  • Alexander Nesterov
    • 1
  • Simon Fernandez
    • 1
  • Thomas Felgenhauer
    • 1
  • Christopher Schirwitz
    • 1
  • Klaus Leibe
    • 1
  • Ralf F. Bischoff
    • 1
  • Frank Breitling
    • 1
  • Volker Stadler
    • 1
  1. 1.Department of Chip-Based Peptide LibrariesGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations