Molecular Endocrinology pp 131-142

Part of the Methods in Molecular Biology book series (MIMB, volume 590) | Cite as

Adenoviral Gene Transfer into Isolated Pancreatic Islets

  • Latha Muniappan
  • Sabire Özcan
Protocol

Abstract

The beta cells within the pancreatic islets are responsible for production of insulin, a peptide hormone required for maintaining normoglycemia. The establishment of efficient gene transfer into pancreatic islets is very important for studies of insulin and glucagon production and secretion, as well as for gene therapy purposes for the treatment of diabetes. We describe here in detail a protocol for adenoviral gene transfer into isolated mouse islets of the pancreas. Effective gene transfer into pancreatic islets using recombinant adenoviruses can be achieved with a multiplicity of infection (MOI) of 10. However, if the islets are not dispersed, adenoviral gene transfer is limited only to the cells on the periphery of the islets, which represent the glucagon-producing alpha cells in rodents. Dispersion of pancreatic islets with EGTA increases the efficiency of gene transfer into the cells within the core of the islets, which consist of insulin-producing beta cells.

Key words

Recombinant adenovirus pancreatic islets diabetes gene therapy insulin gene transfer GFP 

References

  1. 1.
    Wajchenberg, B. L. (2007) Beta-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev. 28, 187–218.PubMedCrossRefGoogle Scholar
  2. 2.
    Zaia, J. A. (2007) The status of gene vectors for the treatment of diabetes. Cell Biochem. Biophys. 48,183190.PubMedCrossRefGoogle Scholar
  3. 3.
    Gainer, A. L., Korbutt, G. S., Rajotte, R. V., Warnock, G. L., and Elliott, J. F. (1996) Successful biolistic transformation of mouse pancreatic islets while preserving cellular function. Transplantation. 61, 1567–1571.PubMedCrossRefGoogle Scholar
  4. 4.
    Leibowitz, G., Beattie, G. M., Kafri, T., Cirulli, V., Lopez, A. D., Hayek, A. et al. (1999) Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes. 48, 745–753.PubMedCrossRefGoogle Scholar
  5. 5.
    Prasad, K. M., Yang, Z., Bleich, D., and Nadler, J. L. (2000) Adeno-associated virus vector mediated gene transfer to pancreatic beta cells. Gene Ther. 7, 1553–1561.PubMedCrossRefGoogle Scholar
  6. 6.
    Sigalla, J., David, A., Anegon, I., Fiche, M., Huvelin, J. M., Boeffard, F. et al. (1997) Adenovirus-mediated gene transfer into isolated mouse adult pancreatic islets: normal beta-cell function despite induction of an anti-adenovirus immune response. Hum. Gene Ther. 8, 1625–1634.PubMedCrossRefGoogle Scholar
  7. 7.
    Barbu, A. R., Akusjarvi, G., and Welsh, N. (2002) Adenoviral-induced islet cell cytotoxicity is not counteracted by Bcl-2 overexpression. Mol. Med. 8, 733–741.PubMedGoogle Scholar
  8. 8.
    Mukai, E., Fujimoto, S., Sakurai, F., Kawabata, K., Yamashita, M., Inagaki, N. et al. (2007) Efficient gene transfer into murine pancreatic islets using adenovirus vectors. J. Control Release. 119, 136–141.PubMedCrossRefGoogle Scholar
  9. 9.
    Csete, M. E., Afra, R., Mullen, Y., Drazan, K. E., Benhamou, P. Y., and Shaked, A. (1994) Adenoviral-mediated gene transfer to pancreatic islets does not alter islet function. Transplant. Proc. 26, 756–757.PubMedGoogle Scholar
  10. 10.
    Wang, X., Olmsted-Davis, E., Davis, A., Liu, S., Li, Z., Yang, J. et al. (2006) Specific targeting of pancreatic islet cells in vivo by insulin-promoter-driven adenoviral conjugated reporter genes. World J. Surg. 30, 1543–1552.PubMedCrossRefGoogle Scholar
  11. 11.
    Takahashi, R., Ishihara, H., Takahashi, K., Tamura, A., Yamaguchi, S., Yamada, T. et al. (2007) Efficient and controlled gene expression in mouse pancreatic islets by arterial delivery of tetracycline-inducible adenoviral vectors. J. Mol. Endocrinol. 38, 127–136.PubMedCrossRefGoogle Scholar
  12. 12.
    Xu, Z. L., Mizuguchi, H., Mayumi, T., and Hayakawa, T. (2003) Regulated gene expression from adenovirus vectors: a systematic comparison of various inducible systems. Gene. 309, 145–151.PubMedCrossRefGoogle Scholar
  13. 13.
    He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.PubMedCrossRefGoogle Scholar
  14. 14.
    MacGregor, R. R., Williams, S. J., Tong, P. Y., Kover, K., Moore, W. V., and Stehno-Bittel, L. (2006) Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am. J. Physiol. Endocrinol. Metab. 290, E771−E779.CrossRefGoogle Scholar
  15. 15.
    Cui, Y. F., Ma, M., Wang, G. Y., Han, D. E., Vollmar, B., and Menger, M. D. (2005) Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning. World J. Gastroenterol. 11,545–550.PubMedGoogle Scholar
  16. 16.
    Barbu, A. R., Bodin, B., Welsh, M., Jansson, L., and Welsh, N. (2006) A perfusion protocol for highly efficient transduction of intact pancreatic islets of Langerhans. Diabetologia. 49, 2388–2391.PubMedCrossRefGoogle Scholar
  17. 17.
    Mosley, A. L. and Ozcan, S. (2003) Adenoviral gene transfer into beta-cell lines. Methods Mol. Med. 83,73–79.PubMedGoogle Scholar
  18. 18.
    Gotoh, M., Maki, T., Kiyoizumi, T., Satomi, S., and Monaco, A. P. (1985) An improved method for isolation of mouse pancreatic islets. Transplantation. 40, 437–438.PubMedCrossRefGoogle Scholar
  19. 19.
    Shewade, Y. M., Umrani, M., and Bhonde, R. R. (1999) Large-scale isolation of islets by tissue culture of adult mouse pancreas. Transplant. Proc. 31, 1721–1723.PubMedCrossRefGoogle Scholar
  20. 20.
    Kelly, C. B., Blair, L. A., Corbett, J. A., and Scarim, A. L. (2003) Isolation of islets of Langerhans from rodent pancreas. Meth. Mol. Med. 83, 3–14.Google Scholar
  21. 21.
    Clark, S. A., Borland, K. M., Sherman, S. D., Rusack, T. C., and Chick, W. L. (1994) Staining and in vitro toxicity of dithizone with canine, porcine, and bovine islets. Cell Transplant. 3, 299–306.PubMedGoogle Scholar
  22. 22.
    Tsukiyama, S., Matsushita, M., Matsumoto, S., Morita, T., Tsuruga, Y., Takahashi, T. et al. (2008) Noble gene transduction into pancreatic beta-cells by singularizing islet cells with low doses of recombinant adenoviral vector. Artif. Organs. 32, 188–194.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Latha Muniappan
    • 1
  • Sabire Özcan
    • 1
  1. 1.Molecular & Cellular BiochemistryUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations