Transgenic Mouse Technology: Principles and Methods

  • T. Rajendra Kumar
  • Melissa Larson
  • Huizhen Wang
  • Jeff McDermott
  • Illya Bronshteyn
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 590)

Abstract

Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the “Cre-lox” technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our institute.

Key words

Transgene mouse embryo pseudopregnancy microinjection gene manipulation reporter genes integration of foreign DNA 

References

  1. 1.
    Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., Carroll, S.B. (2008) Introduction to genetic analysis. W.H. Freeman & Co., New York.Google Scholar
  2. 2.
    Nagy, A., Gertsenstein, M., Vintersten, K., Behringer, R. (2003) Manipulating the mouse embryo: A laboratory manual; 3rd Edition, Cold Spring Harbor Laboratory, New York.Google Scholar
  3. 3.
    Palmiter, R.D., Brinster, R.L. (1986) Germ-line transformation of mice.Ann Rev Genet. 20, 465–499.PubMedCrossRefGoogle Scholar
  4. 4.
    Brinster, R.L., Palmiter, R.D. (1984) Introduction of genes into the germ line of animals. Harvey Lectures. 80, 1–38.PubMedGoogle Scholar
  5. 5.
    Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C., Evans, R.M. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 300, 611–615.PubMedCrossRefGoogle Scholar
  6. 6.
    Bradley, A, van der Weyden, L. (2006) Mouse: Chromosome Engineering for Modeling Human Disease. Ann Rev Genomics Human Genetics. 7, 247–276.CrossRefGoogle Scholar
  7. 7.
    Capecchi, M.R. (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet. 6, 507–512.PubMedCrossRefGoogle Scholar
  8. 8.
    Evans, M. (2005) Embryonic stem cells: a perspective. Novartis Found Symp. 265, 98–103; discussion 103–106.Google Scholar
  9. 9.
    Koller, B.H., Smithies, O. (1992) Altering genes in animals by gene targeting. Ann Rev Immunol. 10, 705–730.CrossRefGoogle Scholar
  10. 10.
    Le, Y., Sauer, B. (2001) Conditional gene knockout using Cre recombinase. Mol Biotechnol. 17, 269–275.PubMedCrossRefGoogle Scholar
  11. 11.
    Sauer, B., Henderson, N. (1989) Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res. 17, 147–161.PubMedCrossRefGoogle Scholar
  12. 12.
    Porret, A., Merillat, A.M., Guichard, S., Beermann, F., Hummler, E. (2006) Tissue-specific transgenic and knockout mice. Methods Mol Biol. 337, 185–205.PubMedGoogle Scholar
  13. 13.
    Austin, C.P., Battey, J.F., Bradley, A., Bucan, M., Capecchi, M., Collins, F.S., et al. (2004) The knockout mouse project. Nat Genet 36, 921–924.PubMedCrossRefGoogle Scholar
  14. 14.
    Joyner, A.L. (2001) Gene Targeting: A practical approach. 2nd edition. Oxford University Press, New York.Google Scholar
  15. 15.
    Kumar, T.R., Schuff, K.G., Nusser, K.D., Low, M.J. (2006) Gonadotroph-specific expression of the human follicle stimulating hormone beta gene in transgenic mice. Mol Cell Endocrinol. 247, 103–115.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamernik, D.L., Keri, R.A., Clay, C.M., Clay, J.N., Sherman, G.B., Sawyer, H.R., et al. (1992) Gonadotrope- and thyrotrope-specific expression of the human and bovine glycoprotein hormone alpha-subunit genes is regulated by distinct cis-acting elements. Mol Endocrinol. 6, 1745–1755.PubMedCrossRefGoogle Scholar
  17. 17.
    Kendall, S.K., Saunders, T.L., Jin, L, Lloyd, R.V., Glode, LM, Nett TM, et al. (1991) Targeted ablation of pituitary gonadotropes in transgenic mice. Mol Endocrinol. 5, 2025–2036.PubMedCrossRefGoogle Scholar
  18. 18.
    Keri, R.A., Bachmann, D.J., Behrooz, A., Herr, B.D., Ameduri, R.K., Quirk, C.C., et al. (2000) An NF-Y binding site is important for basal, but not gonadotropin-releasing hormone-stimulated, expression of the luteinizing hormone beta subunit gene. J Biol Chem. 275, 13082–13088.PubMedCrossRefGoogle Scholar
  19. 19.
    Keri, R.A., Nilson, J.H. (1996) A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone beta subunit promoter in gonadotropes of transgenic mice. J Biol Chem. 271, 10782–10785.PubMedCrossRefGoogle Scholar
  20. 20.
    Quirk, C.C., Lozada, K.L., Keri, R.A., Nilson, J.H. (2001) A single Pitx1 binding site is essential for activity of the LHbeta promoter in transgenic mice. Mol Endocrinol. 15, 734–746.PubMedCrossRefGoogle Scholar
  21. 21.
    Balthasar, N., Mery, P.F., Magoulas, C.B., Mathers, K.E., Martin, A., Mollard, P., et al. (2003) Growth hormone-releasing hormone (GHRH) neurons in GHRH-enhanced green fluorescent protein transgenic mice: a ventral hypothalamic network. Endocrinology. 144, 2728–2740.PubMedCrossRefGoogle Scholar
  22. 22.
    Bonnefont, X., Lacampagne, A., Sanchez-Hormigo, A., Fino, E., Creff, A., Mathieu, M.N., et al. (2005) Revealing the large-scale network organization of growth hormone-secreting cells. Proc Natl Acad Sci USA. 102, 16880–16885.PubMedCrossRefGoogle Scholar
  23. 23.
    Magoulas, C., McGuinness, L., Balthasar, N., Carmignac, D.F., Sesay, A.K, Mathers, K.E., et al. (2000) A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice. Endocrinology. 141, 4681–4689.PubMedCrossRefGoogle Scholar
  24. 24.
    Markkula, M., Kananen, K., Klemi, P., Huhtaniemi, I. (1996) Pituitary and ovarian expression of the endogenous follicle-stimulating hormone (FSH) subunit genes and an FSH beta-subunit promoter-driven herpes simplex virus thymidine kinase gene in transgenic mice; specific partial ablation of FSH-producing cells by antiherpes treatment. J Endocrinol. 150, 265–273.PubMedCrossRefGoogle Scholar
  25. 25.
    Le Tissier, P. R., Carmignac, D.F., Lilley, S., Sesay, A. K., Phelps, C.J., Houston P, et al. (2005) Hypothalamic growth hormone-releasing hormone (GHRH) deficiency: targeted ablation of GHRH neurons in mice using a viral ion channel transgene. Mol Endocrinol 19, 1251–1262.PubMedCrossRefGoogle Scholar
  26. 26.
    Ahtiainen, M., Toppari, J., Poutanen, M., Huhtaniemi, I. (2004) Indirect Sertoli cell-mediated ablation of germ cells in mice expressing the inhibin-alpha promoter/herpes simplex virus thymidine kinase transgene. Biol Reprod. 71, 1545–1550.PubMedCrossRefGoogle Scholar
  27. 27.
    Alarid, E.T., Holley, S., Hayakawa, M., Mellon, P.L. (1998) Discrete stages of anterior pituitary differentiation recapitulated in immortalized cell lines. Mol Cell Endocrinol. 140, 25–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Alarid, E.T., Windle, J.J., Whyte, D.B., Mellon, P.L. (1996) Immortalization of pituitary cells at discrete stages of development by directed oncogenesis in transgenic mice. Development. 122, 3319–3329.PubMedGoogle Scholar
  29. 29.
    Kumar, T. R., Graham, K. E., Asa S. L., Low, M. J. (1998) Simian virus 40 T antigen-induced gonadotroph adenomas: a model of human null cell adenomas. Endocrinology 139, 3342–3351.PubMedCrossRefGoogle Scholar
  30. 30.
    Pernasetti, F., Spady, T. J., Hall, S. B., Rosenberg, S. B., Givens, M. L., Anderson S., et al. (2003) Pituitary tumorigenesis targeted by the ovine follicle-stimulating hormone beta-subunit gene regulatory region in transgenic mice. Mol Cell Endocrinol. 203, 169–183.PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas, P., Mellon, P.L., Turgeon, J., Waring, D.W. (1996) The Lbeta-T2 clonal gonadotrope: a model for single cell studies of endocrine cell secretion. Endocrinology. 137, 2979–2989.PubMedCrossRefGoogle Scholar
  32. 32.
    Windle, J. J., Weiner, R. I., Mellon, P. L. (1990) Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol. 4, 597–603.PubMedCrossRefGoogle Scholar
  33. 33.
    Hanahan, D. (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 315, 115–122.PubMedCrossRefGoogle Scholar
  34. 34.
    Palmiter, R.D. (1987) Molecular biology of metallothionein gene expression. Experientia Suppl. 52, 63–80.Google Scholar
  35. 35.
    Palmiter, R. D., Norstedt, G., Gelinas, R.E., Hammer, R.E., Brinster, R. L. (1983) Metallothionein-human GH fusion genes stimulate growth of mice. Science. 222, 809–814.PubMedCrossRefGoogle Scholar
  36. 36.
    Guo, Q., Kumar, T. R., Woodruff, T. K., Hadsell, L. A., DeMayo, F. J., Matzuk, M. M. (1998) Overexpression of mouse follistatin causes reproductive defects in transgenic mice. Mol Endocrinol. 12, 96–106.PubMedCrossRefGoogle Scholar
  37. 37.
    Kumar, T. R., Palapattu, G., Wang, P., Woodruff, T. K., Boime, I., Byrne M. C., et al. (1999) Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol Endocrinol. 13, 851–865.PubMedCrossRefGoogle Scholar
  38. 38.
    Matzuk, M. M., DeMayo, F. J., Hadsell, L. A., Kumar, T. R. (2003) Overexpression of human chorionic gonadotropin causes multiple reproductive defects in transgenic mice. Biol Reprod. 69, 338–346.PubMedCrossRefGoogle Scholar
  39. 39.
    Ryding, A. D., Sharp, M. G., Mullins, J. J. (2001) Conditional transgenic technologies. J Endocrinol. 171, 1–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Schnutgen, F., Doerflinger, N., Calleja, C., Wendling, O., Chambon, P., Ghyselinck, N.B. (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol. 21, 562–565.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhu, Z., Zheng, T., Lee, C. G., Homer, R. J., Elias, J. A. (2002) Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol. 13, 121–128.PubMedCrossRefGoogle Scholar
  42. 42.
    Karzenowski, D., Potter, D.W., Padidam, M. (2005) Inducible control of transgene expression with ecdysone receptor: gene switches with high sensitivity, robust expression, and reduced size. Biotechniques. 39, 191–192, 194, 196.Google Scholar
  43. 43.
    Pierson, T.M., Wang, Y., DeMayo, F. J., Matzuk, M. M., Tsai, S. Y., O'Malley, B. W. (2000) Regulable expression of inhibin A in wild-type and inhibin alpha null mice. Mol Endocrinol. 14, 1075–1085.PubMedCrossRefGoogle Scholar
  44. 44.
    Albanese, C., Hulit, J., Sakamaki, T., Pestell, R. G. (2002) Recent advances in inducible expression in transgenic mice. Semin Cell Dev Biol. 13, 129–141.PubMedCrossRefGoogle Scholar
  45. 45.
    Marten, H., Hofker, J. V. D., Deursen, J.V. (2003) Transgenic Mouse: Methods and Portocols (Methods in Molecular Biology. V. 209, Humana Press, Totowa, N.J.Google Scholar
  46. 46.
    Han, J. Y. (2008) Germ cells and transgenesis in chickens. Comp Immunol Microbiol Infect Dis.[Epub ahead of print].Google Scholar
  47. 47.
    Houdebine, L. M. (2008) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. [Epub ahead of print].Google Scholar
  48. 48.
    Laible, G., Wells, D. N. (2006) Transgenic cattle applications: the transition from promise to proof. Biotechnol Genet Eng Rev. 22, 125–150.PubMedGoogle Scholar
  49. 49.
    Melo, E. O., Canavessi, A. M., Franco, M. M., Rumpf, R. (2007) Animal transgenesis: state of the art and applications. J Appl Genet. 48, 47–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Robl, J. M., Wang, Z., Kasinathan, P., Kuroiwa, Y. (2007) Transgenic animal production and animal biotechnology. Theriogenology. 467, 127–133.CrossRefGoogle Scholar
  51. 51.
    Halpern, M. E., Rhee, J., Goll, M.G., Akitake, C.M., Parsons, M., Leach, S.D. (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish. 5, 97–110.PubMedCrossRefGoogle Scholar
  52. 52.
    Higashijima, S. (2008) Transgenic zebrafish expressing fluorescent proteins in central nervous system neurons. Dev Growth Differ. 50, 407–413.PubMedCrossRefGoogle Scholar
  53. 53.
    Houdebine, L. M., Chourrout, D. (1991) Transgenesis in fish. Experientia. 47, 891–897.PubMedCrossRefGoogle Scholar
  54. 54.
    Male, R., Lorens, J. B., Nerland, A. H., Slinde, E. (1993) Biotechnology in aquaculture, with special reference to transgenic salmon. Biotechnol Genet Eng Rev. 11, 31–56.PubMedGoogle Scholar
  55. 55.
    Chesneau, A., Sachs, L. M., Chai, N., Chen, Y., Du Pasquier, L., Loeber, J., et al. (2008) Transgenesis procedures in Xenopus. Biol Cell. 100, 503–521.PubMedCrossRefGoogle Scholar
  56. 56.
    Ishibashi, S., Kroll, K. L., Amaya, E. (2008) A method for generating transgenic frog embryos. Methods Mol Biol. 461, 447–466.PubMedCrossRefGoogle Scholar
  57. 57.
    Niemann, H., Kues, W., Carnwath, J. W. (2005) Transgenic farm animals: present and future. Rev Sci Tech. 24, 285–298.PubMedGoogle Scholar
  58. 58.
    Niemann, H, Kues, W. A. (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci. 79, 291–317.PubMedCrossRefGoogle Scholar
  59. 59.
    Van Cott, K.E, Velander, W. H. (1998) Transgenic animals as drug factories: a new source of recombinant protein therapeutics. Expert Opin Investig Drugs. 7, 1683–1690.PubMedCrossRefGoogle Scholar
  60. 60.
    Campbell, K. H., Fisher, P., Chen, W. C., Choi, I., Kelly, R. D., Lee, J. H., et al. (2007) Somatic cell nuclear transfer: Past, present and future perspectives. Theriogenology. 68 Suppl. 1, S214–S231.Google Scholar
  61. 61.
    Dobrinski, I. (2006) Germ cell transplantation in pigs–advances and applications. Soc Reprod Fertil Suppl. 62, 331–339.Google Scholar
  62. 62.
    Prather, R. S., Sutovsky, P., Green, J. A. (2004) Nuclear remodeling and reprogramming in transgenic pig production. Exp Biol Med (Maywood). 229, 1120–1126.Google Scholar
  63. 63.
    Chrenek, P., Makarevich, A. V., Pivko, J., Massanyi, P., Lukac, N. (2009) Characteristics of rabbit transgenic mammary gland expressing recombinant human factor VIII. Anat Histol Embryol. 38, 85–88.PubMedCrossRefGoogle Scholar
  64. 64.
    Kondo M, Sakai T, Komeima K, Kurimoto Y, Ueno S, Nishizawa Y, et al. (2008) Generation of a transgenic rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci.[Epub ahead of print].Google Scholar
  65. 65.
    Li, S., Guo, Y., Shi, J., Yin, C., Xing, F., Xu, L., et al. (2008) Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts. Transgenic Res.[Epub ahead of print].Google Scholar
  66. 66.
    Murphy, D. (2008) Production of transgenic rodents by the microinjection of cloned DNA into fertilized one-celled eggs. Methods Mol Biol. 461, 71–109.PubMedCrossRefGoogle Scholar
  67. 67.
    Chan, A. W., Chong, K.Y., Martinovich, C., Simerly, C., Schatten, G. (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science. 291, 309–312.PubMedCrossRefGoogle Scholar
  68. 68.
    Chan, A. W., Luetjens, C. M., Dominko, T., Ramalho-Santos, J., Simerly, C. R., Hewitson L, et al. (2000) TransgenICSI reviewed: foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey. Mol Reprod Dev. 56, 325–328.PubMedCrossRefGoogle Scholar
  69. 69.
    Kumar, T. R., Low, M. J., Matzuk, M. M. (1998) Genetic rescue of follicle-stimulating hormone beta-deficient mice. Endocrinology. 139, 3289–3295.PubMedCrossRefGoogle Scholar
  70. 70.
    Huang, H. J., Sebastian, J., Strahl, B. D., Wu, J. C, Miller, W. L. (2001) Transcriptional regulation of the ovine follicle-stimulating hormone-beta gene by activin and gonadotropin-releasing hormone (GnRH): involvement of two proximal activator protein-1 sites for GnRH stimulation. Endocrinology. 142, 2267–2274.PubMedCrossRefGoogle Scholar
  71. 71.
    Huang, H. J., Sebastian, J., Strahl, B. D., Wu, J. C., Miller, W. L. (2001) The promoter for the ovine follicle-stimulating hormone-beta gene (FSHbeta) confers FSHbeta-like expression on luciferase in transgenic mice: regulatory studies in vivo and in vitro. Endocrinology. 142, 2260–2266.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. Rajendra Kumar
    • 1
  • Melissa Larson
    • 2
  • Huizhen Wang
    • 3
  • Jeff McDermott
    • 4
  • Illya Bronshteyn
    • 4
  1. 1.Departments of Molecular & Integrative Physiology, Pathology and Laboratory Medicine, and Institute of Maternal and Fetal Biolgoy, Center for Reproductive SciencesUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.Department of Molecular and Integrative Physiology, Center for Reproductive SciencesUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.Transgenic and Gene-Targeting Institutional FacilityUniversityof Kansas Medical CenterKansas CityUSA

Personalised recommendations