Advertisement

Methylated DNA Immunoprecipitation and Microarray-Based Analysis: Detection of DNA Methylation in Breast Cancer Cell Lines

  • Yu-I Weng
  • Tim H.-M. Huang
  • Pearlly S. Yan
Part of the Methods in Molecular Biology book series (MIMB, volume 590)

Abstract

The methylated DNA immunoprecipitation microarray (MeDIP-chip) is a genome-wide, high-resolution approach to detect DNA methylation in whole genome or CpG (cytosine base followed by a guanine base) islands. The method utilizes anti-methylcytosine antibody to immunoprecipitate DNA that contains highly methylated CpG sites. Enriched methylated DNA can be interrogated using DNA microarrays or by massive parallel sequencing techniques. This combined approach allows researchers to rapidly identify methylated regions in a genome-wide manner, and compare DNA methylation patterns between two samples with diversely different DNA methylation status. MeDIP-chip has been applied successfully for analyses of methylated DNA in the different targets including animal and plant tissues (1, 2). Here we present a MeDIP-chip protocol that is routinely used in our laboratory, illustrated with specific examples from MeDIP-chip analysis of breast cancer cell lines. Potential technical pitfalls and solutions are also provided to serve as workflow guidelines.

Key words

DNA methylation epigenetics MeDIP-chip microarray cancer 

References

  1. 1.
    Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T., Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Rauch, T., Wang, Z., Zhang, X., Zhong, X., Wu, X., Lau, S. K., Kernstine, K. H., Riggs, A. D., Pfeifer, G. P., (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc. Natl. Acad. Sci. 104, 5527–5532.PubMedCrossRefGoogle Scholar
  3. 3.
    Esteller, M. (2008) Epigenetics in Cancer. N. Engl. J. Med. 358, 1148–1159.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu, K., Wang, Y. F., Cantemir, C., Muller, M. T. (2003) Endogenous assays of DNA methyltransferases: Evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol. Cell Biol. 23, 2709–19.PubMedCrossRefGoogle Scholar
  5. 5.
    Rollings, R.A., Haghighi, F., Edwards, J.R., Das, R., Zhang, M.Q., Ju, J., Bestor, T.H. (2006) Large-scale structure of genomic methylation patterns. Genome Res. 16, 157–163.CrossRefGoogle Scholar
  6. 6.
    Laird, P.W. (2005) Cancer epigenetics. Hum. Mol. Genet. 14, R65–76.CrossRefGoogle Scholar
  7. 7.
    Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Jaenisch, R., Bird, A. (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254.PubMedCrossRefGoogle Scholar
  9. 9.
    Das, P. M., Signal, R. (2004) DNA methylation and cancer. J. Clin. Oncol. 22, 4632–4642.PubMedCrossRefGoogle Scholar
  10. 10.
    Feinberg, A. P., Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153.PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki, M. M., Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476.PubMedCrossRefGoogle Scholar
  12. 12.
    Herman, J. G., Graff, J. R., Myohanen, S. et al. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.PubMedCrossRefGoogle Scholar
  13. 13.
    Eads, C. A., Danenberg, K. D., Kawakami, K., et al. (1999) CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59, 2302–2306.PubMedGoogle Scholar
  14. 14.
    Xion, Z., Laird, P. W. (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res. 25, 2532–2534.CrossRefGoogle Scholar
  15. 15.
    Gonzalgo, M. L., Jones, P. A. (1997) Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). 25, 2529–2531.Google Scholar
  16. 16.
    Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S., Huang, T. H. (2002) Methylation-specific oligonucleotides microarray: a new potential for high-throughout methylation analysis. Genome Res. 12, 158–164.PubMedCrossRefGoogle Scholar
  17. 17.
    Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah F., Wei, S. H., Huang, T. H. (2002) Applications of CpG island microarrays for high-throughout analysis of DNA methylation. J. Nutr. 132, 2430S–2434S.PubMedGoogle Scholar
  18. 18.
    Weber, M., Davies, J. J., Wittig, D., Oakeley, E. L., Haase, M., Lam, W. L., Schübeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, T.I., Johnstone, S.E., Young, R.A., (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature Protocols 1, 729–748.PubMedCrossRefGoogle Scholar
  20. 20.
    Down, T.A., Rakyan, V.K., Turner, D.J., Flicek, P., Li, H., Kulesha, E., Graf, S., Johnson, N., Herrero, J., Tomazou, E.M., Thorne, N.P., Backdahl, L., Herberth, M., Howe, K.L., Jackson, D.K., Miretti, M.M., Marioni, J.C., Birney, E., Hubbard, T.J.P., Durbin, R., Tavare, S., Beck, S., (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotech. 26, 779–785.CrossRefGoogle Scholar
  21. 21.
    Jacinto, F.V., Ballestar, E., Esteller, M., (2008) Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylation. Biotechniques 44, 35–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Kininis, M., Chen, B.S., Diehl, A.G., Isaacs, G.D., Zhang, T., Siepel, A.C., Clark, A.G., Kraus, W.L., (2007) Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol. Cell. Biol. 27, 5090–5104.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu, C.L., Schreiber, S.L., Bernstein, B.E. (2003) Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4, 19.PubMedCrossRefGoogle Scholar
  24. 24.
    Schilling, E., Rehli, M. (2007) Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics. 90, 314–323.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yu-I Weng
    • 1
  • Tim H.-M. Huang
    • 1
  • Pearlly S. Yan
    • 1
  1. 1.Human Cancer Genetics ProgramThe Ohio State University Comprehensive Cancer CenterColumbusUSA

Personalised recommendations