Magnetic Resonance Imaging

  • Pottumarthi V. Prasad
  • Pippa Storey
Part of the Springer Protocols Handbooks book series (SPH)

1. Introduction

Magnetic resonance imaging (MRI) evolved in the early 1970s and has undergone tremendous growth over the last two decades, primarily as a diagnostic tool. The 2003 Nobel Prize in Physiology or Medicine was awarded to two scientists responsible for the development of nuclear magnetic resonance as an imaging technique. The versatility of the technique has led to increasing interest from the basic science community in recent years. This chapter is a condensed summary of the book that was recently published (1). It provides the reader with a concise outline of the fundamental concepts behind MRI and an introduction to a few biological applications. Interested readers can find more detailed information and other relevant bibliography in the book (1).

2. Principles of Magnetic Resonance

Magnetic resonance imaging exploits the phenomenon of nuclear magnetic resonance (NMR), whereby atomic nuclei exposed to a strong magnetic field absorb and reemit electromagnetic waves at a...


Green Fluorescent Protein Cerebral Blood Volume Blood Oxygenation Level Dependent Transverse Magnetization Magnetic Field Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Prasad PV (2006) Magnetic resonance imaging: methods and biologic applications. Methods Mol Med 124:Humana, Totawa, NJGoogle Scholar
  2. 2.
    Storey P (2006) Introduction to magnetic resonance imaging and spectroscopy. Methods Mol Med 124:3–57PubMedGoogle Scholar
  3. 3.
    Finn J (2006) Pulse sequence design. In: Edelman RR, Hesselink JR, Zlatkin MB, Crues JV (eds) Clinical magnetic resonance imaging, Vol 1.3 vols. ElsevierGoogle Scholar
  4. 4.
    Kirsch JE (1991) Basic principles of magnetic resonance contrast agents. Top Magn Reson Imaging 3:1–18PubMedCrossRefGoogle Scholar
  5. 5.
    Wood ML, Hardy PA (1993) Proton relaxation enhancement. J Magn Reson Imaging 3:149–56PubMedCrossRefGoogle Scholar
  6. 6.
    Anzai Y (2004) Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging 15:103–111PubMedCrossRefGoogle Scholar
  7. 7.
    Prince MR, Meaney JF (2006) Expanding role of MR angiography in clinical practice. Eur Radiol 16 Suppl 2:B3–8PubMedGoogle Scholar
  8. 8.
    Edelman RR (2004) Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology 232:653–668PubMedCrossRefGoogle Scholar
  9. 9.
    Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5:505–514PubMedCrossRefGoogle Scholar
  10. 10.
    Saeed M, Wendland MF, Higgins CB (2000) Blood pool MR contrast agents for cardiovascular imaging. J Magn Reson Imaging 12:890–898PubMedCrossRefGoogle Scholar
  11. 11.
    Caruthers SD, Winter PM, Wickline SA, Lanza GM (2006) Targeted magnetic resonance imaging contrast agents. Methods Mol Med 124:387–400PubMedGoogle Scholar
  12. 12.
    Louie A (2006) Design and characterization of magnetic resonance imaging gene reporters. Methods Mol Med 124:401–417PubMedGoogle Scholar
  13. 13.
    Johnson GA, Cofer GP, Fubara B, Gewalt SL, Hedlund LW, Maronpot RR (2002) Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging 16:423–429PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou YQ, Davidson L, Henkelman RM, Nieman BJ, Foster FS, Yu LX, Chen XJ (2004) Ultrasound-guided left-ventricular catheterization: a novel method of whole mouse perfusion for microimaging. Lab Invest 84:385–389PubMedCrossRefGoogle Scholar
  15. 15.
    Pautler RG, Silva AC, Koretsky AP (1998) In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 40:740–748PubMedCrossRefGoogle Scholar
  16. 16.
    Tjalve H, Henriksson J, Tallkvist J, Larsson BS, Lindquist NG (1996) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol Toxicol 79:347–356PubMedCrossRefGoogle Scholar
  17. 17.
    Tjalve H, Mejare C, Borg-Neczak K (1995) Uptake and transport of manganese in primary and secondary olfactory neurones in pike. Pharmacol Toxicol 77:23–31PubMedCrossRefGoogle Scholar
  18. 18.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  19. 19.
    Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270PubMedGoogle Scholar
  20. 20.
    Grubb RL Jr, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–639PubMedGoogle Scholar
  21. 21.
    Zeirler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10:393–407Google Scholar
  22. 22.
    Matthews PM, Jezzard P (2004) Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 75:6–12PubMedGoogle Scholar
  23. 23.
    Rajagopalan P, Krishnan KR, Passe TJ, Macfall JR (1995) Magnetic resonance imaging using deoxyhemoglobin contrast versus positron emission tomography in the assessment of brain function. Prog Neuropsychopharmacol Biol Psychiatry 19:351–366PubMedCrossRefGoogle Scholar
  24. 24.
    Ugurbil K, Hu X, Chen,W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond B Biol Sci 354:1195–1213PubMedCrossRefGoogle Scholar
  25. 25.
    Prasad PV, Chen Q, Goldfarb JW, Epstein FH, Edelman RR (1997) Breath-hold R2* mapping with a multiple gradient-recalled echo sequence: application to the evaluation of intrarenal oxygenation. J Magn Reson Imaging 7:1163–1165PubMedCrossRefGoogle Scholar
  26. 26.
    Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275PubMedGoogle Scholar
  27. 27.
    Chiarotti G, Cristiani G, Bliulotto L (1955) Proton relaxation in pure liquids and in liquids containing paramagnetic gases in solution. Nuovo Cimento 1:863–873CrossRefGoogle Scholar
  28. 28.
    Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239PubMedCrossRefGoogle Scholar
  29. 29.
    Chen Q, Jakob PM, Griswold MA, Levin DL, Hatabu H, Edelman RR (1998) Oxygen enhanced MR ventilation imaging of the lung. Magma 7:153–161PubMedCrossRefGoogle Scholar
  30. 30.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedCrossRefGoogle Scholar
  31. 31.
    Calamante F, Thomas D L, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19:701–735PubMedCrossRefGoogle Scholar
  32. 32.
    Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedCrossRefGoogle Scholar
  33. 33.
    Wittlich F, Kohno K, Mies G, Norris DG, Hoehn-Berlage M (1995) Quantitative measurement of regional blood flow with gadolinium diethylenetriaminepentaa-cetate bolus track NMR imaging in cerebral infarcts in rats: validation with the iodo[14C]antipyrine technique. Proc Natl Acad Sci USA 92:1846–1850PubMedCrossRefGoogle Scholar
  34. 34.
    Sakoh M, Rohl L, Gyldensted C, Gjedde A, Ostergaard L (2000) Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: comparison with [(15)O]H(2)O positron emission tomography. Stroke 31:1958–1964PubMedGoogle Scholar
  35. 35.
    Hossmann KA, Hoehn-Berlage M (1995) Diffusion and perfusion MR imaging of cerebral ischemia. Cerebrovasc Brain Metab Rev 7:187–217PubMedGoogle Scholar
  36. 36.
    Maeda M, Itoh S, Ide H, Matsuda T, Kobayashi H, Kubota T, Ishii Y (1993) Acute stroke in cats: comparison of dynamic susceptibility-contrast MR imaging with T2- and diffusion-weighted MR imaging. Radiology 189:227–232PubMedGoogle Scholar
  37. 37.
    Roberts TP, Vexler Z, Derugin N, Moseley ME, Kucharczyk J (1993) High-speed MR imaging of ischemic brain injury following stenosis of the middle cerebral artery. J Cereb Blood Flow Metab 13:940–946PubMedGoogle Scholar
  38. 38.
    Hamberg LM, Macfarlane R, Tasdemiroglu E, Boccalini P, Hunter GJ, Belliveau JW, Moskowitz MA, Rosen BR (1993) Measurement of cerebrovascular changes in cats after transient ischemia using dynamic magnetic resonance imaging. Stroke 24:444–450; discussion 450, 451PubMedGoogle Scholar
  39. 39.
    Kucharczyk J, Vexler ZS, Roberts TP, Asgari HS, Mintorovitch J, Derugin N, Watson AD, Moseley ME (1993) Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. Radiology 188:711–717PubMedGoogle Scholar
  40. 40.
    Minematsu K, Fisher M, Li L, Sotak CH (1993) Diffusion and perfusion magnetic resonance imaging studies to evaluate a noncompetitive N-methyl-D-aspartate antagonist and reperfusion in experimental stroke in rats. Stroke 24:2074–2081PubMedGoogle Scholar
  41. 41.
    Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D, Turnbull DH (2003) Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49:848–855PubMedCrossRefGoogle Scholar
  42. 42.
    Pathak AP, Schmainda KM, Ward BD, Linderman JR, Rebro KJ, Greene AS (2001) MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med 46:735–747PubMedCrossRefGoogle Scholar
  43. 43.
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233PubMedCrossRefGoogle Scholar
  44. 44.
    Inouye S, Tsuji FI (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett 341:277–280PubMedCrossRefGoogle Scholar
  45. 45.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedCrossRefGoogle Scholar
  46. 46.
    Moats R, Fraser S, Meade T (1997) A “smart” magnetic resonance imaging agent that reports on specific enzyme activity. Angew Chem Int Ed:726–728Google Scholar
  47. 47.
    Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325PubMedCrossRefGoogle Scholar
  48. 48.
    Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRefGoogle Scholar
  49. 49.
    Bulte JW, Zhang S, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261PubMedCrossRefGoogle Scholar
  50. 50.
    Bulte JW, Ben-Hur T, Miller BR, Mizrachi-Kol R, Einstein O, Reinhartz E, Zywicke HA, Douglas T, Frank JA (2003) MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med 50:201–205PubMedCrossRefGoogle Scholar
  51. 51.
    Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang ZG, Jiang Q, Zhang R, Zhang L, Wang,L, Zhang L, Arniego P, Ho KL, Chopp M (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263PubMedCrossRefGoogle Scholar
  53. 53.
    Walter GA, Cahill KS, Huard J, Feng H, Douglas T, Sweeney HL, Bulte JW (2004) Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 51:273–277PubMedCrossRefGoogle Scholar
  54. 54.
    Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, Lederman RJ (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108:2899–2904PubMedCrossRefGoogle Scholar
  55. 55.
    Garot J, Unterseeh T, Teiger E, Champagne S, Chazaud B, Gherardi R, Hittinger L, Gueret P, Rahmouni A (2003) Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J Am Coll Cardiol 41:1841–1846PubMedCrossRefGoogle Scholar
  56. 56.
    Hill JM, Dick AJ, Raman VK, Thompson RB, Yu ZX, Hinds KA, Pessanha BS, Guttman MA, Varney TR, Martin BJ, Dunbar CE, McVeigh ER, Lederman RJ (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014PubMedCrossRefGoogle Scholar
  57. 57.
    Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRefGoogle Scholar
  58. 58.
    Bulte JW (2006) Intracellular endosomal magnetic labeling of cells. Methods Mol Med 124:419–439PubMedGoogle Scholar
  59. 59.
    Bulte JW, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22:899–907PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pottumarthi V. Prasad
    • 1
  • Pippa Storey
    • 2
  1. 1.Department of Radiology, MRIEvanston Northwestern HealthcareEvanston
  2. 2.Department of Radiology, MRIEvanston Northwestern HealthcareEvanston

Personalised recommendations