Plant Tissue Culture

  • Víctor M. Loyola-Vargas
  • C. De-la-Peña
  • R. M. Galaz-Ávalos
  • F. R. Quiroz-Figueroa
Part of the Springer Protocols Handbooks book series (SPH)

1. Introduction

Plant tissue culture (PTC) is a set of techniques for the aseptic culture of cells, tissues, organs and their components under defined physical and chemical conditions in vitro and controlled environment (Fig. 50.1). PTC technology also explores conditions that promote cell division and genetic re-programming in in vitro conditions and it is considered an important tool in both basic and applied studies, as well as in commercial application ( 1).


Somatic Embryo Somatic Embryogenesis Hairy Root Somaclonal Variation Plant Tissue Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Emily Wortman–Wunder for editorial assistance. The work of the laboratory of V.M.L.-V. is partially funded by CONACYT (Grant No. 61415). V.M.L-V. is a recipient of scholarship from CONACYT, Mexico.


  1. 1.
    Thorpe TA (1990) The current status of plant tissue culture. In: Developments in crop science 19. Plant tissue culture: applications and limitations, Bhojwani SS (ed) Elsevier, Amsterdam, pp 1–33Google Scholar
  2. 2.
    Haberlandt G (1902) Kulturversuche mit isolierten pflanzenzellen. Sber Akad Wiss Wein 111:69–92Google Scholar
  3. 3.
    Krikorian AD, Berquam DL (1969) Plant cell and tissue cultures: the role of Haberlandt. Bot Rev 35:59–87CrossRefGoogle Scholar
  4. 4.
    Kotté W (1922) Kulturversuch isolierten wulzelspitzen. Beitr Allg Bot 2:413–434Google Scholar
  5. 5.
    Robbins WJ (1922) Cultivation of excised root tips and stem under sterile conditions. Bot Gaz 73:376–390CrossRefGoogle Scholar
  6. 6.
    White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600PubMedCrossRefGoogle Scholar
  7. 7.
    Gautheret RJ (1934) Culture du tissue cambial. C R Acad Sci (Paris) Sér III 198:2195–2196Google Scholar
  8. 8.
    White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64CrossRefGoogle Scholar
  9. 9.
    Nobécourt P (1939) Sur la perennite et l'augmentation de volume des cultures de tissus vegétaux. C R Séanc Soc Biol Paris 130:1270–1271Google Scholar
  10. 10.
    Guatheret RJ (1939) Sur la possibilité de réaliser la culture indéfinie des tissue de tubersules de carotte. C R Acad Sci (Paris) Sér III 208:118–121Google Scholar
  11. 11.
    van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young Datura embryos. Science 94:350–351CrossRefGoogle Scholar
  12. 12.
    Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787CrossRefGoogle Scholar
  13. 13.
    Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392CrossRefGoogle Scholar
  14. 14.
    Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Bot 11:118–130Google Scholar
  15. 15.
    Krikorian AD, Simola LK (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893–1973). Physiol Plant 105:348–355CrossRefGoogle Scholar
  16. 16.
    Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II.Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708CrossRefGoogle Scholar
  17. 17.
    Reinert J (1959) Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 53:318–333CrossRefGoogle Scholar
  18. 18.
    Vasil V, Hildebrand AC (1965) Differentiation of tobacco plants from single, isolated cells in micro cultures. Science 150:889–892PubMedCrossRefGoogle Scholar
  19. 19.
    Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants fron isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320CrossRefGoogle Scholar
  20. 20.
    Carlson PS, Smith HH, Dearing PD (1972) Parasexual interspecific plant hybridisation. Proc Natl Acad Sci (USA) 69:2292–2294CrossRefGoogle Scholar
  21. 21.
    Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963CrossRefGoogle Scholar
  22. 22.
    Tabata M, Mizukami H, Hiraoka N, Konoshima M (1974) Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochemistry 13:927CrossRefGoogle Scholar
  23. 23.
    Fujita Y, Takahashi S, Yamada Y (1984) Selection of cell lines with high productivity of shikonin derivatives through protoplast of Lithospermum erythrorhizon, in Third european congress on biotechnology Vol. I, 9/10/1983, Verlag Chemie, Weinheim, pp 161–166Google Scholar
  24. 24.
    Caplan A, Herrera-Estrella L, Inze D, Van Haute E, Van Montagu M, Zambryski JSP (1983) Introduction of genetic material into plant cells. Science 222:815–821PubMedCrossRefGoogle Scholar
  25. 25.
    Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213CrossRefGoogle Scholar
  26. 26.
    Trigiano RN, Gray DJ (2005) Plant development and biotechnology, CRC Press, Boca Raton, FloridaGoogle Scholar
  27. 27.
    Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution – A historical perspective. In Vitro Cell Dev Biol Plant 41:577–583CrossRefGoogle Scholar
  28. 28.
    Loyola-Vargas VM, Vázquez–Flota FA (2006) Plant cell culture protocols, Humana Press, Totowa, New JerseyGoogle Scholar
  29. 29.
    George EF (1993) Plant propagation by tissue culture. Part 1. The technology, Exegetics Limited, Great BritainGoogle Scholar
  30. 30.
    Conger BV (1980) Cloning Agricultural Plants Via in vitro Techniques, CRC Press, Boca Raton, FloridaGoogle Scholar
  31. 31.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  32. 32.
    Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  33. 33.
    Phillips GC, Collins GB (1979)in vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Sci 19:59–64CrossRefGoogle Scholar
  34. 34.
    Halperin W, Wetherell DF (1965) Ammonium requirement for embryogenesis in vitro. Nature 205:519–520CrossRefGoogle Scholar
  35. 35.
    Wetherell DF, Dougall DK (1976) Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol Plant 37:97–103CrossRefGoogle Scholar
  36. 36.
    Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87PubMedCrossRefGoogle Scholar
  37. 37.
    Kao KN, Michayluk R (1975) Nutritional requeriments for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:1095–1100CrossRefGoogle Scholar
  38. 38.
    Dodds JH, Roberts LW (1995) Experiments in plant tissue culture, Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Gamborg OL, Phillips GC (1995) Plant cell, tissue and organ culture. Fundamental methods, Springer-Verlag, GermanyGoogle Scholar
  40. 40.
    Street HE (1977) Plant tissue and cell culture, University of California Press, OxfordGoogle Scholar
  41. 41.
    Thorpe TA (1981) Plant tissue culture. Methods and applications in agriculture, Academic Press, New YorkGoogle Scholar
  42. 42.
    Vasil IK (1985) Cell culture and somatic cell genetics of plants. Vol. 2. Cell growth, nutrition, cytodifferentiation, and cryopreservation, Academic Press, OrlandoGoogle Scholar
  43. 43.
    Constabel F (1984) Callus culture: induction and maintenance. In: Cell culture and somatic cell genetics of plants, Vasil IK (ed) Vol. 1, Academic Press, Orlando, pp. 27–35Google Scholar
  44. 44.
    Smith RH (1992) Plant tissue culture. Techniques and experiments, Academic Press, Inc., San DiegoGoogle Scholar
  45. 45.
    Allan E (1991) Plant cell culture. In: Plant cell and tissue culture, Stafford A, Warren G (eds) Open University Press, London, pp 1–24Google Scholar
  46. 46.
    King PJ (1984) Induction and maintenance of cell suspension cultures. In: Cell culture and somatic cell genetics of plants, Vasil IK (ed) Vol. 1, Academic Press, Orlando, pp 130–138Google Scholar
  47. 47.
    Butcher DN, Street HE (1964) Excised root culture. Bot Rev 30:513–586CrossRefGoogle Scholar
  48. 48.
    Lindsey K, Yeoman MM (1983) The relationship between growth rate, differentiation and alkaloid accumulation in cell cultures. J Exp Bot 34:1055–1065CrossRefGoogle Scholar
  49. 49.
    Loyola-Vargas VM, Miranda-Ham ML (1995) Root culture as a source of secondary metabolites of economic importance. Rec Advan Phytochem 29:217–248Google Scholar
  50. 50.
    Canto-Canché B, Loyola-Vargas VM (1999) Chemical from roots, hairy roots, and their application. Adv Exp Med Biol 464:235–275PubMedGoogle Scholar
  51. 51.
    Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226PubMedCrossRefGoogle Scholar
  52. 52.
    Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741CrossRefGoogle Scholar
  53. 53.
    Flores HE, Filner P (1985) Hairy roots of Solanaceae as a source of alkaloids. Plant Physiol 77:12sCrossRefGoogle Scholar
  54. 54.
    Flores HE, Filner P (1985) Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Primary and secondary metabolism in plant cell cultures, Neumann KH, Barz W, Reinhard E (eds) Springer-Verlag, Heidelberg, pp 174–186Google Scholar
  55. 55.
    Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opi Plant Biol 9:341–346CrossRefGoogle Scholar
  56. 56.
    Jordan M, Humam M, Bieri S, Christen P, Poblete E, Munoz O (2006)in vitro shoot and root organogenesis, plant regeneration and production of tropane alkaloids in some species of Schizanthus. Phytochemistry 67:570–578PubMedCrossRefGoogle Scholar
  57. 57.
    Hernández-Domínguez E, Campos F, Vázquez-Flota FA (2004) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnol Lett 26:671–674PubMedCrossRefGoogle Scholar
  58. 58.
    Ekiert H, Choloniewska M, Gomólka E (2001) Accumulation of furanocoumarins in Ruta graveolens L. shoot culture. Biotechnol Lett 23:543–545CrossRefGoogle Scholar
  59. 59.
    Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A, Vardapetyan H (2000) Stimulation of the production of hypericins by mannan in Hypericum perforatum shoot cultures. Phytochemistry 53:345–348PubMedCrossRefGoogle Scholar
  60. 60.
    Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplast technology: status and applications. In Vitro Cell Dev Biol Plant 41:202–212CrossRefGoogle Scholar
  61. 61.
    Acuña JR, de Pena M (1991) Plant regeneration from protoplasts of embryogenic cell suspensions of Coffea arabica L. cv. caturra. Plant Cell Rep 10:345–348Google Scholar
  62. 62.
    Toruan-Mathius N (1992) Isolation and protoplasts culture of Coffea arabica L. Biotechnol Forest Tree Improvement 49:89–98Google Scholar
  63. 63.
    Aftab F, Iqbal J (1999) Plant regeneration from protoplasts derived from cell suspension of adventive somatic embryos in sugarcane (Saccharum spp.hybrid cv. CoL-54 and cv. CP-43/33). Plant Cell Tiss Org Cult 56:155–162CrossRefGoogle Scholar
  64. 64.
    Arcioni S, Davey MR, Dos Santos AVP, Cocking EC (1982) Somatic embryo-genesis in tissues from mesophyll and cell suspension protoplasts of Medicago coerulea and M. glutinosa. Z Pflanzenphysiol 106:105–110Google Scholar
  65. 65.
    Ara H, Jaiswal U, Jaiswal VS (2000) Plant regeneration from protoplasts of mango (Mangifera indica L.) through somatic embryogenesis. Plant Cell Rep 19:622– 627CrossRefGoogle Scholar
  66. 66.
    Vasil IK, Vasil V, Redway F (1990) Plant regeneration from embryogenic calli, cell suspension cultures and protoplasts of Triticum aestivum L. (Wheat). In: Progress in plant cellular and molecular biology., Nijkamp HJJ, Van der Plas LHW, Van Aartrijk J (eds) Kluwer Academic Publishers, Dordrecht, pp 33–37Google Scholar
  67. 67.
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302: 1956–1960PubMedCrossRefGoogle Scholar
  68. 68.
    Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Meth 2:615–619CrossRefGoogle Scholar
  69. 69.
    Hammatt N, Lister A, Blackhall NW, Gartland J, Ghose TK, Gilmour DM, Power JB, Davey MR, Cocking EC (1990) Selection of plant heterokaryons from diverse origins by flow cytometry. Protoplasma 154:34–44CrossRefGoogle Scholar
  70. 70.
    Yarbrough JA (1936) The foliar embryos of Tolmiea menziesii. Am J Bot 123: 16–20CrossRefGoogle Scholar
  71. 71.
    Yarbrough JA (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Am J Bot 19:443–453CrossRefGoogle Scholar
  72. 72.
    Phillips GC (2004)in vitro morphogenesis in plants – Recent advances. In Vitro Cell Dev Biol Plant 40:342–345CrossRefGoogle Scholar
  73. 73.
    Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86:285–301CrossRefGoogle Scholar
  74. 74.
    Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47CrossRefGoogle Scholar
  75. 75.
    Sugiyama M (1999) Organogenesis in vitro. Curr Opi Plant Biol 2:61–64CrossRefGoogle Scholar
  76. 76.
    Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefGoogle Scholar
  77. 77.
    Sugiyama M (2000) Genetic analysis of plant morphogenesis in vitro. Int Rev Cytol 196:67–84PubMedCrossRefGoogle Scholar
  78. 78.
    George EF (1996) Plant propagation by tissue culture. Part 2, Exegetics Limited, EnglandGoogle Scholar
  79. 79.
    Debergh PC, Zimmerman RH (1993) Micropropagation. Technology and application, Kluer Academic Publishers, NetherlandsGoogle Scholar
  80. 80.
    Herman EB (1991) Recent Advances in Plant Tissue Culture. Regeneration, Micropropagation and Media 1988–1991, Agritech Consultants, Inc., USAGoogle Scholar
  81. 81.
    Herman EB (1995) Recent advances in plant tissue culture III. Regeneration and micropropagation: techniques, systems and media 1991–1995, Agritech Consultants, USAGoogle Scholar
  82. 82.
    Kyte L, Kleyn J (1996) Plant from test tubes. An introduction to micropropagation, Timber Press, PortlandGoogle Scholar
  83. 83.
    Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Current Pharmaceutical Biotechnology 7:33–49PubMedCrossRefGoogle Scholar
  84. 84.
    Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166CrossRefGoogle Scholar
  85. 85.
    George EF (1993) Plant propagation and micropropagation. In: Plant propagation by tissue culture. Part 1, George EF (ed) Exegetics Limited, England, pp 37–66Google Scholar
  86. 86.
    Hazarika BN (2006) Morpho–physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120CrossRefGoogle Scholar
  87. 87.
    Huang C, Chen C (2005) Physical properties of culture vessels for plant tissue culture. Biosys Eng 91:501–511CrossRefGoogle Scholar
  88. 88.
    Chen C (2004) Humidity in plant tissue culture vessels. Biosys Eng 88:231–241CrossRefGoogle Scholar
  89. 89.
    Zobayed SMA, Afreen F, Xiao Y, Kozai T (2004) Recent advancement in research on photoautotrophic micropropagation using large culture vessels with forced ventilation. In Vitro Cell Dev Biol Plant 40:450–458CrossRefGoogle Scholar
  90. 90.
    Lowe KC, Anthony P, Power JB, Davey MR (2003) Novel approaches for regulating gas supply to plant systems in vitro: application and benefits of artificial gas carriers. In Vitro Cell Dev Biol Plant 39:557–566CrossRefGoogle Scholar
  91. 91.
    Pierik RLM, Ruibing MA (1997) Developments in the micropropagation industry in the Netherlands. Plant Tiss Cult Biotechnol 3:152–156Google Scholar
  92. 92.
    Robert ML, Herrera-Herrera JL, Herrera-Herrera G, Herrera-Alamillo MA, Fuentes-Carrillo P (2006) A new temporary immersion bioreactor system for micropropagation. In: Plant cell culture protocols, Loyola-Vargas VM, Vázquez-Flota F (eds) Humana Press, Totowa, New Jersey, pp 121–129Google Scholar
  93. 93.
    Etienne H, Berthouly M (2002) Temporary immersion systems in plant micro-propagation. Plant Cell Tiss Org Cult 69:215–231CrossRefGoogle Scholar
  94. 94.
    Berthouly M, Dufour M, Alvard D, Carasco C, Alemanno L, Teisson C (1995) Coffee micropropagaction in a liquid medium using the temporary immersion technique, in 16è Colloque Scientifique International sur le Café, Association Scientifique Internationale du Café, Paris, pp 514–519Google Scholar
  95. 95.
    Cabasson C, Alvard D, Dambier D, Ollitrault P, Teisson C (1997) Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell Tiss Org Cult 50:33–37CrossRefGoogle Scholar
  96. 96.
    Etienne H, Lartaud M, Michaux-Ferrière N, Carron MP, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (mull. arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33:81–87CrossRefGoogle Scholar
  97. 97.
    Lorenzo JC, González BL, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss Org Cult 54:197–200CrossRefGoogle Scholar
  98. 98.
    Zimmerman JL (1993) Somatic embryogenesis: A model for early development in higher plants. Plant Cell 5:1411–1423PubMedCrossRefGoogle Scholar
  99. 99.
    Schmidt EDL, Guzzo F, Toonen MAJ, De Vries SC (1997) A leucinerich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  100. 100.
    Komamine A, Murata N, Nomura K (2005) Mechanisms of somatic embryogen-esis in carrot suspension cultures – morphology, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 41:6–10CrossRefGoogle Scholar
  101. 101.
    Kawahara R, Komamine A (1995) Molecular basis of somatic embryogenesis, In: Biotechnology in agriculture and forestry. Vol. 30. Somatic embryogenesis and synthetic seed I, Bajaj YPS (ed) Springer-Verlag, Berlin, pp 30–40Google Scholar
  102. 102.
    Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509Google Scholar
  103. 103.
    Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228CrossRefGoogle Scholar
  104. 104.
    Nogler GA (1984) Gametophytic Apomixis. In: Embryology of Angiosperms, Johri BM (ed) Springer-Verlag, Berlin, pp 475–518Google Scholar
  105. 105.
    Raghavan V (2000) Developmental biology of flowering plants, Springer-Verlag, NYCrossRefGoogle Scholar
  106. 106.
    Maraschin SF, de Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726PubMedCrossRefGoogle Scholar
  107. 107.
    Bhojwani SS, Razdan MK (1983) Plant Tissue Culture: Theory and Practice, Elsevier, AmsterdamGoogle Scholar
  108. 108.
    Waris H (1957) A striking morphogenetic effect of amino acid in seed plant. Suom Kemistil 36B:121Google Scholar
  109. 109.
    Rojas-Herrera R, Quiroz-Figueroa FR, Sánchez-Teyer F, Loyola-Vargas VM (2002) Molecular analysis of somatic embryogenesis: An overview. Physiol Mol Biol Plants 8:171–184Google Scholar
  110. 110.
    Kato H, Takeuchi M (1963) Morphogenesis in vitro starting from single cells of carrot root. Plant Cell Physiol 4:243–245Google Scholar
  111. 111.
    Halperin W (1966) Alternative morphogenetic events in cell suspensions. Am J Bot 53:443–453CrossRefGoogle Scholar
  112. 112.
    Schiavone FM, Cooke TJ (1985) A geometric analysis of somatic embryo formation in carrot cell culture. Can J Bot 63:1573–1578CrossRefGoogle Scholar
  113. 113.
    Nakamura T, Taniguchi T, Maeda E (1992) Studies on somatic embryogenesis of coffee by scanning electron microscope. Jpn J Crop Sci 61:476–486Google Scholar
  114. 114.
    Wetherell DF (1984) Enhanced adventive embryogenesis resulting from plasmo-lysis of cultured wild carrot cells. Plant Cell Tiss Org Cult 5:221–227CrossRefGoogle Scholar
  115. 115.
    Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol Plant 25:1163–1166CrossRefGoogle Scholar
  116. 116.
    Litz RE (1986) Effect of osmotic stress on somatic embryogenesis in Carica suspension cultures. J Am Soc Hortic Sci 111:969–972Google Scholar
  117. 117.
    Galiba G, Yamada Y (1988) A novel method increasing the frequency of somatic embryogenesis in wheat tissue culture by NaCl and KCl supplementation. Plant Cell Rep 7:55–58CrossRefGoogle Scholar
  118. 118.
    Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114PubMedCrossRefGoogle Scholar
  119. 119.
    Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast–derived cells of alfalfa. Plant Physiol 129:1807–1819PubMedCrossRefGoogle Scholar
  120. 120.
    Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryo-genesis in carrot by heavy metal ions. Can J Bot 68:2301–2303CrossRefGoogle Scholar
  121. 121.
    Smith DL, Krikorian AD (1989) Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am J Bot 76:1832–1843PubMedCrossRefGoogle Scholar
  122. 122.
    Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415CrossRefGoogle Scholar
  123. 123.
    Roustan J-P, Latche A, Fallot J (1989) Effet de l'acide salicylique et de l'acide acétylsalicylique sur la production d'éthylène et l'embryogenèse somatique de suspensions cellulaires de carotte (Daucus carota L.). C R Acad Sci (Paris) Sér III 308:395–399Google Scholar
  124. 124.
    Hutchinson MJ, Saxena PK (1996) Acetylsalicylic acid enhances and synchronizes thidiazuron-induced somatic embryogenesis in geranium (Pelargonium x hortorum Bailey) tissue cultures. Plant Cell Rep 15:512–515CrossRefGoogle Scholar
  125. 125.
    Quiroz-Figueroa FR, Méndez-Zeel M, Larqué-Saavedra A, Loyola-Vargas VM (2001) Picomolar concentrations of salycilates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep 20:679–684CrossRefGoogle Scholar
  126. 126.
    Leslie CA, Romani RJ (1986) Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep 5:144–146CrossRefGoogle Scholar
  127. 127.
    Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185CrossRefGoogle Scholar
  128. 128.
    Hutchinson MJ, Murr D, Krishnaraj S, Senaratna T, Saxena PK (1997) Does ethylene play a role in thidiazuron–regulated somatic embryogenesis of geranium (Pelargonium x Hortorum bailey) hypocotyl cultures? In Vitro Cell Dev Biol Plant 33:136–141CrossRefGoogle Scholar
  129. 129.
    Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of eth-ylene in somatic embryogenesis from leaf disks of Coffea canephora. Plant Sci 107:199–204CrossRefGoogle Scholar
  130. 130.
    Kairong KR, Xing GS, Liu XM, Xing GM, Wang YF (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16CrossRefGoogle Scholar
  131. 131.
    Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2– metabolizing enzyme activities. Plant Sci 161:125–132CrossRefGoogle Scholar
  132. 132.
    Dudits D, Bögre L, Györgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:473–482Google Scholar
  133. 133.
    Dudits D, Györgyey J, Bögre L, Bakó L (1995) Molecular biology of somatic embryogenesis. In: in vitro embryogenesis in plants, Thorpe TA (ed) Kluwer Academic Publishers, Dordrecht 267–308CrossRefGoogle Scholar
  134. 134.
    Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann NY Acad Sci 851:187–198PubMedCrossRefGoogle Scholar
  135. 135.
    Higashi K, Daita M, Kobayashi T, Sasaki K, Harada H, Kamada H (1998) Inhibitory conditioning for carrot somatic embryogenesis in high-cell-density cultures. Plant Cell Rep 18:2–6CrossRefGoogle Scholar
  136. 136.
    Umehara M, Ogita S, Sasamoto H, Koshino H, Asami T, Fujioka S, Yoshida S, Kamada H (2005) Identification of a novel factor, vanillyl benzyl ether, which inhibits somatic embryogenesis of Japanese larch (Larix leptolepis Gordon). Plant Cell Physiol 46:445–453PubMedCrossRefGoogle Scholar
  137. 137.
    Yang H, Matsubayashi Y, Hanai H, Sakagami Y (2000) Phytosulfokine-α, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors. Plant Cell Physiol 41:825–830PubMedCrossRefGoogle Scholar
  138. 138.
    Igasaki T, Akashi N, Ujino-Ihara T, Matsubayashi Y, Sakagami Y, Shinohara K (2003) Phytosulfokine stimulates somatic embryogenesis in Cryptomeria japonica. Plant Cell Physiol 44:1412–1416PubMedCrossRefGoogle Scholar
  139. 139.
    Fridborg E (1978) The effect of activated charcoal on tissue cultures; adsorption of metabolites inhibiting morphogenesis. Physiol Plant 43:104–106CrossRefGoogle Scholar
  140. 140.
    Osuga K, Kamada H, Komamine A (1993) Cell density is an important factor for synchronization of the late stage of somatic embryogenesis at high frequency. Plant Tiss Cult Lett 10:180–183Google Scholar
  141. 141.
    Kobayashi T, Higashi K, Sasaki K, Asami T, Yoshida S, Kamada H (2000) Purification from conditioned medium and chemical identification of a factor that inhibits somatic embryogenesis in carrot. Plant Cell Physiol 41:268–273PubMedGoogle Scholar
  142. 142.
    Kobayashi T, Eun CH, Hanai H, Matsubayashi Y, Sakagami Y, Kamada H (1999) Phytosulphokine–α, a peptidyl plant growth factor, stimulates somatic embryo-genesis in carrot. J Exp Bot 50:1123–1128Google Scholar
  143. 143.
    Igasaki T, Akashi N, Shinohara K (2006) Somatic embryogenesis in Cryptomeria japonica D. Don: gene for phytosulfokine (PSK) precursor. In: Somatic embryo-genesis, Mujib A, Samaj J (eds) Springer, Berlin, Heidelberg, pp 201–213CrossRefGoogle Scholar
  144. 144.
    Satoh S, Kamada H, Harada H, Fujii T (1986) Auxin–controlled glycoprotein release into the medium of embryogenic carrot cells. Plant Physiol 81:931–933PubMedCrossRefGoogle Scholar
  145. 145.
    Cordewener J, Booij H, Van der Zandt H, Van Engelen FA, Van Kammen A, De Vries SC (1991) Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isoenzymes. Planta 184:478–486CrossRefGoogle Scholar
  146. 146.
    Lo Schiavo F, Giuliano G, De Vries SC, Genga A, Bollini R, Pitto L, Cozzani F, Nuti-Ronchi V, Terzi M (1990) A carrot cell variant temperature sensitive for somatic embryogenesis reveals a defect in the glycosylation of extracellular proteins. Mol Gen Genet 223:385–393PubMedCrossRefGoogle Scholar
  147. 147.
    De Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, Van Kammen A, De Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433PubMedCrossRefGoogle Scholar
  148. 148.
    Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, De Vries SC, Mariani P, Terzi M (1997) The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta 203:381–389PubMedCrossRefGoogle Scholar
  149. 149.
    De Jong AJ, Hendriks T, Meijer EA, Penning M, Lo Schiavo F, Terzi M, Van Kammen A, De Vries SC (1995) Transient reduction in secreted 32 kD chitinase prevents somatic embryogenesis in the carrot (Daucus carota L.) variant ts11. Devel Genet 16:332–343CrossRefGoogle Scholar
  150. 150.
    Van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, Van Kammen A, De Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890PubMedCrossRefGoogle Scholar
  151. 151.
    Egertsdotter U, Mo LH, Von Arnold S (1993) Extracellular proteins in embryo-genic suspension cultures of Norway spruce (Picea abies). Physiol Plant 88: 315–321CrossRefGoogle Scholar
  152. 152.
    Egertsdotter U, Vo n Arnold S (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 93:334–345CrossRefGoogle Scholar
  153. 153.
    Letarte J, Simion E, Miner M, Kasha K (2006) Arabinogalactans and arabinoga-lactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698PubMedCrossRefGoogle Scholar
  154. 154.
    Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; Its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol J 23:153–161CrossRefGoogle Scholar
  155. 155.
    Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816PubMedCrossRefGoogle Scholar
  156. 156.
    Lotan T, Ohto M, Matsudaira YK, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis leafy cotyledon1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205PubMedCrossRefGoogle Scholar
  157. 157.
    Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) Leafy cotyledon encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci (USA) 98:11806–11811CrossRefGoogle Scholar
  158. 158.
    Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, Van Lammeren AAM, Miki BLA, Custers JBM, Van Lookeren-Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedCrossRefGoogle Scholar
  159. 159.
    Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  160. 160.
    Kwon CS, Chen C, Wagner D (2005) Arabidopsis SPLAYED in dynamic control of stem cell fate in is a primary target for transcriptional regulation by WUSCHEL. Genes Dev 19:992–1003PubMedCrossRefGoogle Scholar
  161. 161.
    Ogas J, Chen J-C, Sung ZR, Somerville C (1997) Cellular Differentiation Regulated by Gibberellin in the Arabidopsis thaliana pickleMutant. Science 277:91–94PubMedCrossRefGoogle Scholar
  162. 162.
    Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-like 15. Plant Physiol 133:653–663PubMedCrossRefGoogle Scholar
  163. 163.
    Bayliss MW (1973) Origin of chromosome number variation in cultured plant cells. Nature 246:529–530CrossRefGoogle Scholar
  164. 164.
    Gengenbach BG, Connelly JA, Pring DR, Conde MF (1981) Mitochondrial DNA variation in maize plants regenerated during tissue culture selection. Theor Appl Genet 59:161–167CrossRefGoogle Scholar
  165. 165.
    Larkin PJ, Scowcroft WR (1981) Somaclonal variation –a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefGoogle Scholar
  166. 166.
    Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188PubMedCrossRefGoogle Scholar
  167. 167.
    Monk M (1990) Variation in epigenetic inheritance. Trends Genet 6:110–114PubMedCrossRefGoogle Scholar
  168. 168.
    Larkin PJ, Ryan SA, Brettell RIS, Scrowcroft WR (1984) Heritable somaclonal variation in wheat. Theor Appl Genet 67:443–456CrossRefGoogle Scholar
  169. 169.
    Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437CrossRefGoogle Scholar
  170. 170.
    Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci (USA) 90:8773–8776CrossRefGoogle Scholar
  171. 171.
    Bebeli PJ, Karp A, Kaltsikes PJ (1990) Somaclonal variation from cultured immature embryos of sister lines of rye differing in heterochromatic content. Genome 33:177–183Google Scholar
  172. 172.
    Skirvin RM, Coyner M, Norton MA, Motoike S, Gorvin D (2000) Somaclonal variation: do we know what causes it? AgBiotechNet 2:1–4Google Scholar
  173. 173.
    Orton TJ (1984) Case histories of genetic variability in vitro: celery. In: Cell culture and somatic cell genetics of plants. Vol. 3. Plant regeneration and genetic variability, Vasil IK (ed) Academic Press, Inc., Orlando, pp 245–366Google Scholar
  174. 174.
    Evans DA (1988) Applications of somaclonal variation. In: Biotechnology in Agriculture, Mizrahi A (ed) Alan R. Liss, Inc., New York 203–223Google Scholar
  175. 175.
    Van den Bulk RW, Löfer HJM, Lindhout WH, Koornneef M (1990) Somaclonal variation in tomato: effect of explant source and comparison with chemical muta-genesis. Theor Appl Genet 80:817–825Google Scholar
  176. 176.
    Novak FJ, Daskalov S, Brunner H, Nesticky M, Afza R, Dolezelova M, Lucretti S, Herichova A, Hermelin T (1988) Somatic embryogenesis in maize and comparison of genetic variability induced by gamma radiation and tissue culture techniques. J Plant Breed 101:66–79CrossRefGoogle Scholar
  177. 177.
    Yang ZP, Yang XY, Huang DC (1998) Studies on somaclonal variants for resistance to scab in bread wheat (Triticum aestivum L.) through in vitro selection for tolerance to deoxynivalenol. Euphytica 101:213–219CrossRefGoogle Scholar
  178. 178.
    Claxton JR, Arnold DL, Clarkson JM, Blakesley D (1998) The regeneration and screening of watercress somaclones for resistance to Spongospora subterranea f. sp. nasturtii and measurement of somaclonal variation. Plant Cell Tiss Org Cult 52:155–164CrossRefGoogle Scholar
  179. 179.
    Ahmed KZ, Mesterhazy A, Bartok T, Sagi F (1996) in vitro techniques for selecting wheat (Triticum aestivum L) for Fusarium–resistance.2. Culture filtrate technique and inheritance of Fusarium–resistance in the somaclones. Euphytica 91:341–349CrossRefGoogle Scholar
  180. 180.
    Muhammad AJ, Othman RY (2005) Charactherization of Fusarium wiltresist-ant and Fusarium wilt-susceptible somaclones of banana cultivar Rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers. Plant Molecular Biology Reporter 23:241–249CrossRefGoogle Scholar
  181. 181.
    Bertin P, Kinet JM, Bouharmont J (1996) Heritable chilling tolerance improvement in rice through somaclonal variation and cell line selection. Aust J Bot 44:91–105CrossRefGoogle Scholar
  182. 182.
    Bertin P, Bouharmont J, Kinet JM (1997) Somaclonal variation and improvement of chilling tolerance in rice: Changes in chilling–induced chlorophyll fluorescence. Crop Sci 37:1727–1735CrossRefGoogle Scholar
  183. 183.
    Bertin P, Bouharmont J (1997) Use of somaclonal variation and in vitro selection for chilling tolerance improvement in rice. Euphytica 96:135–142CrossRefGoogle Scholar
  184. 184.
    Mohamed MA, Harris PJC, Henderson J (2000) in vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci 159:213–222PubMedCrossRefGoogle Scholar
  185. 185.
    Bajji M, Bertin P, Lutts S, Kinet JM (2004) Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro. Aust J Exp Agricul 44:27–35CrossRefGoogle Scholar
  186. 186.
    Bertin P, Busogoro JP, Tilquin JP, Kinet JM, Bouharmont J (1996) Field evaluation and selection of rice somaclonal variants at different altitudes. Plant Breed 115:183–188CrossRefGoogle Scholar
  187. 187.
    Lutts S, Kinet JM, Bouharmont J (1998) NaCl impact on somaclonal variation exhibited by tissue culture– derived fertile plants of rice (Oryza sativa L.). J Plant Physiol 152:92–103Google Scholar
  188. 188.
    Bariaud-Fontanel A, Tabata M (1988) Somaclonal variation in the berberine-producing capability of a culture strain of Thalictrum minus. Plant Cell Rep 7:206–209CrossRefGoogle Scholar
  189. 189.
    Berlin J (1990) Screening and selection for variant cell lines with increased levels of secondary metabolites. In: Secondary Products from Plant Tissue Culture, Charlwood BV, Rhodes MJC (eds) Oxford University Press, Oxford 119–137Google Scholar
  190. 190.
    Dougall DK (1990) Somaclonal variation as a tool for the isolation of elite cell lines to produce secondary metabolites. In: Production of Secondary Metabolites from Plant Tissue Cultures and its Biotechnological Perspectives, Loyola-Vargas VM (ed) CICY, Merida, Yucatan, pp 122–137Google Scholar
  191. 191.
    Ravindra NS, Kulkarni RN, Gayathri MC, Ramesh S (2004) Somaclonal variation for some morphological traits, herb yield, essential oil contentand essential oil composition in an Indian cultivar of rose–scented geranium. Plant Breed 123:84–86CrossRefGoogle Scholar
  192. 192.
    Bozorgipour R, Snape JW (1997) An assessment of somaclonal variation as a breeding tool for generating herbicide tolerant genotypes in wheat (Triticum aestivum L.). Euphytica 94:335–340CrossRefGoogle Scholar
  193. 193.
    Jan VV, De Macedo CC, Kinet JM, Bouharmont J (1997) Selection of Al-resist-ant plants from a sensitive rice cultivar using somaclonal variation, in vitro and hydroponic cultures. Euphytica 97:303–310CrossRefGoogle Scholar
  194. 194.
    Bidhan R, Asit BM (2005) Towards development of Al-toxicity tolerant lines in indica rice by exploiting somaclonal variation. Euphytica 145:221–227CrossRefGoogle Scholar
  195. 195.
    Adkins SW, Shiraishi T, McComb JA, Ratanopol S, Kupkanchanakul T, Armstrong LJ, Schultz AL (1990) Somaclonal variation in rice-submergence tolerance and other agronomic characters. Physiol Plant 80:647–654CrossRefGoogle Scholar
  196. 196.
    Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed, “Datura stramonium”. Science 55:646–647PubMedCrossRefGoogle Scholar
  197. 197.
    Guha S, Maheshwari SC (1964) in vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  198. 198.
    Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grain of Datura in vitro. Nature 212:97–98CrossRefGoogle Scholar
  199. 199.
    Germaná MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org Cult 86:131–146CrossRefGoogle Scholar
  200. 200.
    Thomas WTB, Forster BP, Gertsson B (2003) Doubled haploids in breeding. In: Doubled haploid production in crop plants, a manual, Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Kluwer Academic Publishers, Dordrecht 337–349Google Scholar
  201. 201.
    Feiyu T, Yazhong T, Tianyong Z, Guoying W (2006) in vitro production of hap-loid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell Tiss Org Cult 84:100210–100214CrossRefGoogle Scholar
  202. 202.
    Guangyuan H, Jinrui Z, Kexiu L, Zhiyong X, Mingjie C, Junli C, Yuesheng W, Guangxiao Y, Beáta B (2006) An improved system to establish highly embryo-genic haploid cell and protoplast cultures from pollen calluses of maize (Zea mays L.). Plant Cell Tiss Org Cult 86:15–25CrossRefGoogle Scholar
  203. 203.
    Loyola-Vargas VM, Vázquez-Flota FA (2006) An introduction to plant cell culture: Back to the future. In: Plant cell culture protocols, Loyola-Vargas VM, Vázquez-Flota FA (eds) Humana Press, Totowa, New Jersey, pp 1–8Google Scholar
  204. 204.
    Leckie F, Scragg AH, Cliffe KC (1990) The effect of continuous high shear stress on plant cell suspension cultures. In: Progress in plant cellular and molecular biology, Nijkamp HJJ, Van der Plas LHW, Van Aartrijk J (eds) Kluwer Academic Publishers, The Netherlands, pp 689–693Google Scholar
  205. 205.
    Dracup M (1991) Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Aust J Plant Physiol 18:1–15CrossRefGoogle Scholar
  206. 206.
    Takeuchi Y, Komamine A (1982) Effects of culture conditions on cell division and composition of regenerated cell walls in Vinca rosea protoplasts. Plant Cell Physiol 23:249–255Google Scholar
  207. 207.
    Takeuchi Y, Komamine A (1981) Glucans in the cell walls regenerated from Vinca rosea protoplasts. Plant Cell Physiol 22:1585–1594Google Scholar
  208. 208.
    Takeuchi Y, Komamine A (1978) Composition of the cell wall formed protoplasts isolated from cell suspension cultures of Vinca rosea. Planta 140:227–232CrossRefGoogle Scholar
  209. 209.
    Zenk MH (1991) Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of gold. Phytochemistry 30:3861–3863CrossRefGoogle Scholar
  210. 210.
    Loyola-Vargas VM, Hernández-Sotomayor SMT (2003) Hairy root cultures of Catharanthus roseus: A model for primary and secondary metabolic studies. In: Plant Genetic Engineering Vol. 1: Applications and limitations, Singh RP, Jaiwal PK (eds) Sci Tech Publishing LLC, Houston, pp 297–315Google Scholar
  211. 211.
    Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134CrossRefGoogle Scholar
  212. 212.
    Verpoorte R, Van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transg Res 9:323–343CrossRefGoogle Scholar
  213. 213.
    Shimazaki A, Ashihara H (1982) Adenine and guanine salvage in suspension cultured cells of Catharanthus roseus. Ann Bot 50:531–534Google Scholar
  214. 214.
    Hirose F, Ashihara H (1983) Comparison of purine metabolism in suspension cultured cells of different growth phases and stem tissue of Catharanthus roseus. Z Naturforsch [C] 38:375–381Google Scholar
  215. 215.
    Kartosentono S, Indrayanto G, Zaini NC (2002) The uptake of copper ions by cell suspension cultures of Agave amaniensis, and its effect on the growth, amino acids and hecogenin content. Plant Cell Tiss Org Cult 68:287–292CrossRefGoogle Scholar
  216. 216.
    Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Org Cult 81:287–300CrossRefGoogle Scholar
  217. 217.
    Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tiss Org Cult 81:277–285CrossRefGoogle Scholar
  218. 218.
    Takayama S, Misawa M (1981) Mass propagation of Begoniahiemalis plantlet by shake culture. Plant Cell Physiol 22:461–467Google Scholar
  219. 219.
    Paek KY, Hahn E-J, Son SH (2001) Application of biorreactors for large-scale micropropagation systems of plants. In Vitro Cell Dev Biol -Plant 37:149–157CrossRefGoogle Scholar
  220. 220.
    Kartha KK (1984) Elimination of viruses. In: Cell culture and somatic cell genetics of plants. Vol. 1. Laboratory procedures and their applications, Vasil IK (ed) Academic Press Inc., Orlando, pp 577–585Google Scholar
  221. 221.
    Warren G (1996) The regeneration of plants from cultured cells and tissues. In: Plant cell and tissue culture, Stafford A, Warren G (eds) John Wiley & Sons, England, pp 82–100Google Scholar
  222. 222.
    Verma N, Ram R, Hallan V, Kumar K, Zaidi AA (2004) Production of cucumber mosaic virus-free chrysanthemums by meristem tip culture. Crop Protection 23:469–473CrossRefGoogle Scholar
  223. 223.
    Eisa S, Koyro HW, Kogel KH, Imani J (2005) Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant Cell Tiss Org Cult 81:243–246CrossRefGoogle Scholar
  224. 224.
    Katoh N, Yui M, Sato S, Shirai T, Yuasa H, Hagimori M (2004) Production of virus-free plants from virus-infected sweet pepper by in vitro grafting. Sci Hortic 100:1–6CrossRefGoogle Scholar
  225. 225.
    Verma N, Ram R, Zaidi AA (2005) in vitro production of Prunus necrotic ringspot virus-free begonias through chemo- and thermotherapy. Sci Hortic 103:239–247CrossRefGoogle Scholar
  226. 226.
    Torrance L (1998) Developments in serological methods to detect and identify plant viruses. Plant Cell Tiss Org Cult 52:27–32CrossRefGoogle Scholar
  227. 227.
    Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants – a review. Euphytica 89:325–337Google Scholar
  228. 228.
    Reed SM (2005) Embryo rescue. In: Plant development and biotechnology, Trigiano RN, Gray DJ (eds) CRC Press, Boca Raton, Florida 235–239Google Scholar
  229. 229.
    Stewart JM (1981) in vitro fertilization and embryo rescue. Env Exp Bot 21:301–315CrossRefGoogle Scholar
  230. 230.
    Alan LM, Henning MJ (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21:1121–1128PubMedCrossRefGoogle Scholar
  231. 231.
    Martínez-Palacios A, Ortega-Larrocea MP, Chávez VM, Bye R (2003) Somatic embryogenesis and organogenesis of Agave victoriae -reginae: Considerations for its conservation. Plant Cell Tiss Org Cult 74:135–142CrossRefGoogle Scholar
  232. 232.
    Manjkhola S, Dhar U, Joshi M (2006) Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma – A critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol Plant 41:244–248Google Scholar
  233. 233.
    Moebius-Goldammer KG, Mata-Rosas M, Chávez-Avila VM (2003) Organogenesis and somatic embryogenesis in Ariocarpus kotschoubeyanus (Lem.) K. Schum. (Cactaceae), an endemic and endangered Mexican species. In Vitro Cell Dev Biol Plant 39:388–393Google Scholar
  234. 234.
    West FR Jr, Mika ES (1957) Synthesis of atropine by isolated roots and root–callus cultures of belladonna. Bot Gaz 119:50–54CrossRefGoogle Scholar
  235. 235.
    Straus J (1959) Anthocyanin synthesis in corn endosperm tissue cultures 1. Identity of the pigments and general factors. Plant Physiol 34:536–541PubMedCrossRefGoogle Scholar
  236. 236.
    Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130:863–864PubMedCrossRefGoogle Scholar
  237. 237.
    Tabata M, Ogino T, Yoshioka K, Yoshikawa N, Hiraoka N (1978) Selection of cell lines with higher yield of secondary products. In: Frontiers of Plant Tissue Culture, Thorpe TA (ed) The International Association for Plant Tissue Culture, Calgary, Canada, pp 213–221Google Scholar
  238. 238.
    Fujita Y, Hara Y, Suga C, Marimoto T (1981) Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. II. A new medium for the production of shikonin derivatives. Plant Cell Rep 1:61–63CrossRefGoogle Scholar
  239. 239.
    Hara Y, Morimoto T, Fujita Y (1987) Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon V. Differences in the production between callus and suspension cultures. Plant Cell Rep 6:8–11CrossRefGoogle Scholar
  240. 240.
    Fujita Y, Takahashi S, Yamada Y (1985) Selection of cell lines with high productivity of shikonin derivatives by protoplast culture of Lithospermum erythrorhizon cells. Agric Biol Chem 49:1755–1759CrossRefGoogle Scholar
  241. 241.
    Mizukami H, Konoshima M, Tabata M (1977) Effect od nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry 16:1183–1186CrossRefGoogle Scholar
  242. 242.
    Widholm JM (1977) Selection and characterization of biochemical mutants. In: Plant tissue culture and its bio-technological application, Barz W, Reinhard E, Zenk MH (eds) Springer-Verlag, Berlin, pp 112–122Google Scholar
  243. 243.
    Eilert U (1998) Induction of alkaloid biosynthesis and accumulation in plants and in vitro cultures in response to elicitation. In: Alkaloids. Biochemistry, ecology, and medicinal applications, Roberts MF, Wink M (eds) Plenum Press, New York, pp 219–238Google Scholar
  244. 244.
    Kurz WGW, Constabel F, Eilert U, Tyler RT (1988) Elicitor treatment: a method for metabolite production by plant cell cultures in vitro. In: Topics in Pharmaceutical Sciences 1987, Breimer DD, Speiser P (eds) Elsevier Science Publishers B. V., Amsterdam, pp 283–290Google Scholar
  245. 245.
    Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of tax-oid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105PubMedCrossRefGoogle Scholar
  246. 246.
    Lee-Parsons CWT, Ertük S, Tengtrakool J (2004) Enhancement of ajmalicine production in Catharanthus roseus cell cultures with methyl jasmonate is dependent on timing and dosage of elicitation. Biotechnol Lett 26:1595–1599PubMedCrossRefGoogle Scholar
  247. 247.
    Xu MJ, Dong JF, Zhu MY (2005) Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiol 139:991–998PubMedCrossRefGoogle Scholar
  248. 248.
    Brodelius P (1985) The potential role of immobilization in plant cell biotechnology. Trends Biotechnol 3:280–285CrossRefGoogle Scholar
  249. 249.
    Yeoman MM (1987) Techniques, characteristics, properties, and commercial potential of immobilized plant cells. In: Cell culture and somatic cell genetics of plants. Vol. 4. Cell culture in phytochemistry, Constabel F, Vasil IK (eds) Academic Press, Co., San Diego, pp 197–215Google Scholar
  250. 250.
    Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Engineering 6:268–276PubMedCrossRefGoogle Scholar
  251. 251.
    Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opi Biotechnol 13:181–187CrossRefGoogle Scholar
  252. 252.
    Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Overexpression in Catharanthus roseus hairy roots of a trucated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97:135–145PubMedCrossRefGoogle Scholar
  253. 253.
    Rommens CM (2006) Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends Plant Sci 11:317–319PubMedCrossRefGoogle Scholar
  254. 254.
    Nap JP, Metz PLJ, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. Plant J 33:1–18PubMedCrossRefGoogle Scholar
  255. 255.
    Power JB, Cummind SE, Cocking EC (1970) Fusion of isolated protoplasts. Nature 225:1016–1018PubMedCrossRefGoogle Scholar
  256. 256.
    Cocking EC (2000) Turning point article plant protoplasts. In Vitro Cell Dev Biol Plant 36:77–82Google Scholar
  257. 257.
    Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313CrossRefGoogle Scholar
  258. 258.
    Schell J, Van Montagu M, Holsters M, Zambryski P, Joos H, Inzé D, Herrera-Estrella L, Depicker A, De Block M, Caplan A, Dhaese P, Van Haute E, Hernalsteens JP, De Greve H, Leemans J, Deblaere R, Willmitzer L, Schröder J, Otten L (1983) Ti plasmids as experimental gene vectors for plants. In: Advances in gene technology: molecular genetics of plants and animals, Downey K, Voellmy RW, Ahmad F, Schultz J (eds) Academic Press, New York/London, pp 191–209Google Scholar
  259. 259.
    Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232PubMedCrossRefGoogle Scholar
  260. 260.
    Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. Journal of Applied Microbiology 99:7–23PubMedCrossRefGoogle Scholar
  261. 261.
    Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836PubMedCrossRefGoogle Scholar
  262. 262.
    Song W-Y, Soh EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919PubMedCrossRefGoogle Scholar
  263. 263.
    Zenk MH (1995) Chasing the enzymes of alkaloid biosytnhesis. In: Organic reactivity: Physical and biological aspects, Golding BT, Maskill H (eds) The Royal Society of Chemistry, Cambridge, pp 89–109Google Scholar
  264. 264.
    Verpoorte R, Van der Heijden R Memelink J (1998) Plant biotechnology and the production of alkaloids. Prospects of metabolic engineering. In: The Alkaloids. Vol. 50, Cordell GA (ed) Academic Press, San Diego, pp 453–508Google Scholar
  265. 265.
    Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot–scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tiss Org Cult 62:187–193CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Víctor M. Loyola-Vargas
    • 1
  • C. De-la-Peña
    • 2
  • R. M. Galaz-Ávalos
    • 1
  • F. R. Quiroz-Figueroa
    • 3
  1. 1.Centro de Investigacion Cientificia de YucatanYucatanMexico
  2. 2.Department of Horticulture and Landscape ArchitectureColorado State UniversityFort Collins
  3. 3.Department of Molecular Biology of Plants, Istituto de BiotechnologiaUniversidad Nacional Autonoma de Mexico (UNAM)CuernavacaMexico

Personalised recommendations