Gene Expression Profiling

  • Arnis Druka
  • Robbie Waugh
  • Pete Hedley
Part of the Springer Protocols Handbooks book series (SPH)

1. Introduction

Gene expression profiling measures the relative abundance of a large number of individual mRNA species within the context of a total mRNA population that has been isolated and purified from a target biological sample. The technology for achieving this evolved from low-throughput membrane-based probe-to- target hybridization assays (northern and Southern blotting) commonly used in molecular biology labs since the 1980s (reviewed in 1). Scaling these assays down in size and up in number by redesigning the assay into a “target-to-probe” hybridization has enabled efficient and highly parallel genome-wide gene expression analysis. The technology platforms that emerged are generically called microarrays. A comprehensive review of microarrays, their history, application, and analysis is given by Schena (2).

The goal of gene expression profiling, achieved by microarray analysis, is to aid the biologist in identifying groups of genes that are functionally associated with certain...


Microarray Experiment mRNA Abundance Gene Expression Matrix Dormancy Break Spotted Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82PubMedCrossRefGoogle Scholar
  2. 2.
    Schena M (2003) Microarray analysis. Wiley-Liss, New Jersey, USA.Google Scholar
  3. 3.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14,863–14,868CrossRefGoogle Scholar
  4. 4.
    Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Gen 7:55–65CrossRefGoogle Scholar
  5. 5.
    Eriksson ME, Millar AJ (2003) The Circadian Clock. A plants best friend in a spinning world. Plant Physiology 132:732–738PubMedCrossRefGoogle Scholar
  6. 6.
    Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  7. 7.
    Galbraith DW, Birnbaum K, (2006) Global Studies of Cell Type-Specific Gene Expression in Plants. Annu Rev Plant Biol 57:451–475PubMedCrossRefGoogle Scholar
  8. 8.
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert JM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302(5652):1956–1960PubMedCrossRefGoogle Scholar
  9. 9.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–70PubMedCrossRefGoogle Scholar
  10. 10.
    Detailed information related to different aspects of the Affymetrix Genechip Technology, including, relevant references, platform design, instrumentation, reagents and analytical tools, can be found at:
  11. 11.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995):767–773PubMedCrossRefGoogle Scholar
  12. 12.
    Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264PubMedCrossRefGoogle Scholar
  13. 13.
    Causton HC, Quackenbush J, Brazma A (eds.) (2003) Analysis of gene expression data matrices. In: Microarray gene expression data analysis. Blackwell, Oxford, UK. pp. 71–75Google Scholar
  14. 14.
    Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analyses of arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615PubMedCrossRefGoogle Scholar
  15. 15.
    Vanneste S, Rybel BD, Beemster GTS, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for solitary root/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050PubMedCrossRefGoogle Scholar
  16. 16.
    Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2006) Coordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045CrossRefGoogle Scholar
  17. 17.
    Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16(9): 2514–2528PubMedCrossRefGoogle Scholar
  18. 18.
    Damerval C, Maurice A, Josse JM, de-Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression, Genetics 137:289–301PubMedGoogle Scholar
  19. 19.
    Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391PubMedCrossRefGoogle Scholar
  20. 20.
    Williams RW (2006) Expression genetics and the phenotype revolution. Mamm Genome 17(6):496–502PubMedCrossRefGoogle Scholar
  21. 21.
    Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev Genet 7(11):862–872PubMedCrossRefGoogle Scholar
  22. 22.
    Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52PubMedCrossRefGoogle Scholar
  23. 23.
    West MAL, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St.Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript level variation in arabidopsis genetics. Genetics 106.06497Google Scholar
  24. 24.
    Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schrelber A, Wise R, Close TC, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall DF, Waugh R (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics 6(3):202–21PubMedCrossRefGoogle Scholar
  25. 25.
    Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ (2007) SFP geno-typing from Affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176(2):789–800PubMedCrossRefGoogle Scholar
  26. 26.
    Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37(7):710–717PubMedCrossRefGoogle Scholar
  27. 27.
    Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau W, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R (2006) NCBI GEO: mining tens of millions of expression profiles – database and tools update. Nucleic Acids Res 33:D562–6CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Ball CA, Brazma A (2006) MGED standards: work in progress. OMICS 10(2):138–144PubMedCrossRefGoogle Scholar
  30. 30.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29(4):365–37PubMedCrossRefGoogle Scholar
  31. 31.
    Shi L et al (2006) The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24(9):1151–1161PubMedCrossRefGoogle Scholar
  32. 32.
    Chesler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat Neurosci 7(5):485–486PubMedCrossRefGoogle Scholar
  33. 33.
    Yang Y, Engin L, Wurtele ES, Cruz-Neira C, Dickerson JA (2005) Integration of metabolic networks and gene expression in virtual reality. Bioinformatics 21(18):3645–3650PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Arnis Druka
    • 1
  • Robbie Waugh
    • 1
  • Pete Hedley
    • 1
  1. 1.Department of GeneticsSCRI InvergowrieDundeeUK

Personalised recommendations