Strategies for Designing Transgenic DNA Constructs

  • Chengyu Liu
Part of the Methods in Molecular Biology book series (MIMB, volume 1027)


Generation and characterization of transgenic mice are important elements of biomedical research. In recent years, transgenic technology has become more versatile and sophisticated, mainly because of the incorporation of recombinase-mediated conditional expression and targeted insertion, site-specific endonuclease-mediated genome editing, siRNA-mediated gene knockdown, various inducible gene expression systems, and fluorescent protein marking and tracking techniques. Site-specific recombinases (such as PhiC31) and engineered endonucleases (such as ZFN and Talen) have significantly enhanced our ability to target transgenes into specific genomic loci, but currently a great majority of transgenic mouse lines are continuingly being created using the conventional random insertion method. A major challenge for using this conventional method is that the genomic environment at the integration site has a substantial influence on the expression of the transgene. Although our understanding of such chromosomal position effects and our means to combat them are still primitive, adhering to some general guidelines can significantly increase the odds of successful transgene expression. This chapter first discusses the major problems associated with transgene expression, and then describes some of the principles for using plasmid and bacterial artificial chromosomes (BACs) for generating transgenic constructs. Finally, the strategies for conducting each of the major types of transgenic research are discussed, including gene overexpression, promoter characterization, cell-lineage tracing, mutant complementation, expression of double or multiple transgenes, siRNA knockdown, and conditional and inducible systems.

Key words

Transgene DNA construct Position effects BAC Plasmid Overexpression Insulator siRNA Recombinase Cre–loxP FLP-FRT Conditional Inducible Animal model 



This work was supported by the Intramural Research Program of the National Heart, Lung, and Blood Institute.


  1. 1.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedCrossRefGoogle Scholar
  2. 2.
    Heeneman S, Lutgens E, Schapira KB, Daemen MJ, Biessen EA (2008) Control of atherosclerotic plaque vulnerability: insights from transgenic mice. Front Biosci 13:6289–6313PubMedCrossRefGoogle Scholar
  3. 3.
    de Winther MP, Hofker MH (2002) New mouse models for lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol 13:191–197PubMedCrossRefGoogle Scholar
  4. 4.
    Bock HH, Herz J, May P (2007) Conditional animal models for the study of lipid metabolism and lipid disorders. Handb Exp Pharmacol 178:407–439Google Scholar
  5. 5.
    Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721PubMedCrossRefGoogle Scholar
  6. 6.
    Rossant J, Nutter LM, Gertsenstein M (2011) Engineering the embryo. Proc Natl Acad Sci USA 108(19):7659– 7660Google Scholar
  7. 7.
    Xiao A, Wu Y, Yang Z, Hu Y, Wang W, Zhang Y, Kong L, Gao G, Zhu Z, Lin S, Zhang B (2013) EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering. Nucleic Acids Res 41:D415–422Google Scholar
  8. 8.
    Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, Luo L (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA 108(19):7902– 7907Google Scholar
  9. 9.
    Montoliu L, Chavez S, Vidal M (2000) Variegation associated with lacZ in transgenic animals: a warning note. Transgenic Res 9:237–239PubMedCrossRefGoogle Scholar
  10. 10.
    Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci U S A 88:478–482PubMedCrossRefGoogle Scholar
  11. 11.
    Qiu L, Wang H, Xia X, Zhou H, Xu Z (2008) A construct with fluorescent indicators for conditional expression of miRNA. BMC Biotechnol 8:77PubMedCrossRefGoogle Scholar
  12. 12.
    Garrick D, Fiering S, Martin DI, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Genet 18:56–59PubMedCrossRefGoogle Scholar
  13. 13.
    Lau S, Jardine K, McBurney MW (1999) DNA methylation pattern of a tandemly repeated LacZ transgene indicates that most copies are silent. Dev Dyn 215:126–138PubMedCrossRefGoogle Scholar
  14. 14.
    Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24:137–142PubMedCrossRefGoogle Scholar
  15. 15.
    Lois C (2006) Generation of transgenic animals using lentiviral vectors. In: Pease S, Lois C (eds) Mammalian and avian transgenesis—new approaches. Springer, Heidelberg, Germany, pp 1–22CrossRefGoogle Scholar
  16. 16.
    Li Q, Harju S, Peterson KR (1999) Locus control regions: coming of age at a decade plus. Trends Genet 15:403–408PubMedCrossRefGoogle Scholar
  17. 17.
    Harraghy N, Gaussin A, Mermod N (2008) Sustained transgene expression using MAR elements. Curr Gene Ther 8:353–366PubMedCrossRefGoogle Scholar
  18. 18.
    Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713PubMedCrossRefGoogle Scholar
  19. 19.
    Giraldo P, Rival-Gervier S, Houdebine LM, Montoliu L (2003) The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res 12:751–755PubMedCrossRefGoogle Scholar
  20. 20.
    Recillas-Targa F, Valadez-Graham V, Farrell CM (2004) Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays 26:796–807PubMedCrossRefGoogle Scholar
  21. 21.
    Pawlik KM, Sun CW, Higgins NP, Townes TM (1995) End joining of genomic DNA and transgene DNA in fertilized mouse eggs. Gene 165:173–181PubMedCrossRefGoogle Scholar
  22. 22.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  23. 23.
    Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925PubMedCrossRefGoogle Scholar
  24. 24.
    Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15:859–865PubMedCrossRefGoogle Scholar
  25. 25.
    Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779PubMedCrossRefGoogle Scholar
  26. 26.
    Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870PubMedCrossRefGoogle Scholar
  27. 27.
    Van Keuren ML, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18:769–785PubMedCrossRefGoogle Scholar
  28. 28.
    Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, Schutz G (1993) A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res 21:4783–4787PubMedCrossRefGoogle Scholar
  29. 29.
    Henning KA, Novotny EA, Compton ST, Guan XY, Liu PP, Ashlock MA (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci U S A 96:592–597PubMedCrossRefGoogle Scholar
  30. 30.
    Barash I, Faerman A, Richenstein M, Kari R, Damary GM, Shani M, Bissell MJ (1999) In vivo and in vitro expression of human serum albumin genomic sequences in mammary epithelial cells with beta-lactoglobulin and whey acidic protein promoters. Mol Reprod Dev 52:241–252PubMedCrossRefGoogle Scholar
  31. 31.
    Zhan Y, Brady JL, Johnston AM, Lew AM (2000) Predominant transgene expression in exocrine pancreas directed by the CMV promoter. DNA Cell Biol 19:639–645PubMedCrossRefGoogle Scholar
  32. 32.
    Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 94:3058–3063PubMedCrossRefGoogle Scholar
  33. 33.
    Echelard Y, Meade H (2002) Toward a new cash cow. Nat Biotechnol 20:881–882PubMedCrossRefGoogle Scholar
  34. 34.
    Keefer CL (2004) Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82–83:5–12PubMedCrossRefGoogle Scholar
  35. 35.
    Niemann H, Kues WA (2007) Transgenic farm animals: an update. Reprod Fertil Dev 19:762–770PubMedCrossRefGoogle Scholar
  36. 36.
    Litscher ES, Liu C, Echelard Y, Wassarman PM (1999) Zona pellucida glycoprotein mZP3 produced in milk of transgenic mice is active as a sperm receptor, but can be lethal to newborns. Transgenic Res 8:361–369PubMedCrossRefGoogle Scholar
  37. 37.
    Saunders TL (2003) Reporter molecules in genetically engineered mice. Methods Mol Biol 209:125–143PubMedGoogle Scholar
  38. 38.
    Huang WY, Aramburu J, Douglas PS, Izumo S (2000) Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6:482–483PubMedCrossRefGoogle Scholar
  39. 39.
    Liu HS, Jan MS, Chou CK, Chen PH, Ke NJ (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260:712–717PubMedCrossRefGoogle Scholar
  40. 40.
    Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7:483PubMedCrossRefGoogle Scholar
  41. 41.
    Peng S, York JP, Zhang P (2006) A transgenic approach for RNA interference-based genetic screening in mice. Proc Natl Acad Sci U S A 103:2252–2256PubMedCrossRefGoogle Scholar
  42. 42.
    Kuhn R, Streif S, Wurst W (2007) RNA interference in mice. Handb Exp Pharmacol 178:149–176Google Scholar
  43. 43.
    43.Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, Scuoppo C, Zuber J, Dickins RA, Kogan SC, Shroyer KR, Sordella R, Hannon GJ, Lowe SW (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145(1):145–158Google Scholar
  44. 44.
    Shinagawa T, Ishii S (2003) Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev 17:1340–1345PubMedCrossRefGoogle Scholar
  45. 45.
    Stein P, Svoboda P, Schultz RM (2003) Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev Biol 256:187–193PubMedCrossRefGoogle Scholar
  46. 46.
    Fedoriw AM, Stein P, Svoboda P, Schultz RM, Bartolomei MS (2004) Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303:238–240PubMedCrossRefGoogle Scholar
  47. 47.
    Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P (2006) A versatile tool for conditional gene expression and knockdown. Nat Methods 3:109–116PubMedCrossRefGoogle Scholar
  48. 48.
    Trichas G, Begbie J, Srinivas S (2008) Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol 6:40Google Scholar
  49. 49.
    Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164PubMedCrossRefGoogle Scholar
  50. 50.
    Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 93:6191–6196PubMedCrossRefGoogle Scholar
  51. 51.
    Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2:e162PubMedCrossRefGoogle Scholar
  52. 52.
    Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99–109PubMedCrossRefGoogle Scholar
  53. 53.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71PubMedCrossRefGoogle Scholar
  54. 54.
    Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208:281–292PubMedCrossRefGoogle Scholar
  55. 55.
    Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155PubMedCrossRefGoogle Scholar
  56. 56.
    Awatramani R, Soriano P, Mai JJ, Dymecki S (2001) An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Nat Genet 29:257–259PubMedCrossRefGoogle Scholar
  57. 57.
    Wamhoff BR, Sinha S, Owens, GK (2007) Conditional mouse models to study developmental and pathophysiological gene function in muscle, Handb Exp Pharmacol 178:441–468Google Scholar
  58. 58.
    Mishina Y, Hanks MC, Miura S, Tallquist MD, Behringer RR (2002) Generation of Bmpr/Alk3 conditional knockout mice. Genesis 32:69–72PubMedCrossRefGoogle Scholar
  59. 59.
    Hebert JM, McConnell SK (2000) Targeting of cre to the Foxg1 (BF-1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222:296–306PubMedCrossRefGoogle Scholar
  60. 60.
    Murali D, Yoshikawa S, Corrigan RR, Plas DJ, Crair MC, Oliver G, Lyons KM, Mishina Y, Furuta Y (2005) Distinct developmental programs require different levels of Bmp signaling during mouse retinal development. Development 132:913–923PubMedCrossRefGoogle Scholar
  61. 61.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828PubMedCrossRefGoogle Scholar
  62. 62.
    Kasim V, Miyagishi M, Taira K (2003) Control of siRNA expression utilizing Cre-loxP recombination system. Nucleic Acids Res Suppl 3:255–256Google Scholar
  63. 63.
    Fritsch L, Martinez LA, Sekhri R, Naguibneva I, Gerard M, Vandromme M, Schaeffer L, Harel-Bellan A (2004) Conditional gene knock-down by CRE-dependent short interfering RNAs. EMBO Rep 5:178–182PubMedCrossRefGoogle Scholar
  64. 64.
    Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21:321–324PubMedCrossRefGoogle Scholar
  65. 65.
    Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2(9–10):508–515PubMedCrossRefGoogle Scholar
  66. 66.
    Nern A, Pfeiffer BD, Svoboda K, Rubin GM (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci USA 108(34):14198– 14203Google Scholar
  67. 67.
    Suzuki E, Nakayama M (2011)VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res 39(8):e49Google Scholar
  68. 68.
    Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res 23(4):465–472Google Scholar
  69. 69.
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62PubMedCrossRefGoogle Scholar
  70. 70.
    Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL (1983) Metallothionein-human GH fusion genes stimulate growth of mice. Science 222:809–814PubMedCrossRefGoogle Scholar
  71. 71.
    Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRefGoogle Scholar
  72. 72.
    Albanese C, Reutens AT, Bouzahzah B, Fu M, D’Amico M, Link T, Nicholson R, Depinho RA, Pestell RG (2000) Sustained mammary gland-directed, ponasterone A-inducible expression in transgenic mice. FASEB J 14:877–884PubMedGoogle Scholar
  73. 73.
    Jones SN, Jones PG, Ibarguen H, Caskey CT, Craigen WJ (1991) Induction of the Cyp1a-1 dioxin-responsive enhancer in transgenic mice. Nucleic Acids Res 19:6547–6551PubMedCrossRefGoogle Scholar
  74. 74.
    Sprengel R, Hasan MT (2007) Tetracycline-controlled genetic switches. Handb Exp Pharmacol 49–72Google Scholar
  75. 75.
    Keyvani K, Baur I, Paulus W (1999) Tetracycline-controlled expression but not toxicity of an attenuated diphtheria toxin mutant. Life Sci 64:1719–1724PubMedCrossRefGoogle Scholar
  76. 76.
    Imhof MO, Chatellard P, Mermod N (2000) A regulatory network for the efficient control of transgene expression. J Gene Med 2:107–116PubMedCrossRefGoogle Scholar
  77. 77.
    Baron U, Freundlieb S, Gossen M, Bujard H (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 23:3605–3606PubMedCrossRefGoogle Scholar
  78. 78.
    Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30:e134PubMedCrossRefGoogle Scholar
  79. 79.
    Leneuve P, Colnot S, Hamard G, Francis F, Niwa-Kawakita M, Giovannini M, Holzenberger M (2003) Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles. Nucleic Acids Res 31:e21PubMedCrossRefGoogle Scholar
  80. 80.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890PubMedCrossRefGoogle Scholar
  81. 81.
    Hunter NL, Awatramani RB, Farley FW, Dymecki SM (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41:99–109PubMedCrossRefGoogle Scholar
  82. 82.
    Wunderlich FT, Wildner H, Rajewsky K, Edenhofer F (2001) New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res 29:E47PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Chengyu Liu
    • 1
  1. 1.iPSC and Genome Engineering CoreNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations