A Short Primer on the Functional Analysis of Copy Number Variation for Biomedical Scientists

  • Michael R. BarnesEmail author
  • Gerome Breen
Part of the Methods in Molecular Biology book series (MIMB, volume 628)


Recent studies have highlighted the potential prevalence of copy number variation (CNV) in mammalian genomes, including the human genome. These studies suggest that CNVs may play a potentially important role in human phenotypic diversity and disease susceptibility. Here, we consider some of the in silico challenges of characterizing genomic structural variants. While the phenotypic impact of the vast majority of CNVs is likely to be neutral, some CNVs will clearly impact phenotype. Here, we review some of the key databases hosting CNV data and discuss some of the caveats in the analysis of CNV data. The task is now to translate some of the initial associations between CNVs and disease into causal variants.

Key words

Genome CNV Deletion Duplication Copy number Bioinformatics Variation CNV 


  1. 1.
    Lee, A.S., Gutierrez-Arcelus, M., Perry, G.H., Vallender, E.J., Johnson, W.E., Miller, G.M., Korbel, J.O. and Lee, C. (2008) Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Hum. Mol. Genet., 17, 1127–1136.PubMedCrossRefGoogle Scholar
  2. 2.
    Henrichsen, C.N., Chaignat, E. and Reymond, A. (2009) Copy number variants, diseases and gene expression. Hum. Mol. Genet., 18, R1-R8.PubMedCrossRefGoogle Scholar
  3. 3.
    Freeman, J.L., Perry, G.H., Feuk, L., Redon, R., McCarroll, S.A., Altshuler, D.M., et al. (2006) Copy number variation: new insights in genome diversity. Genome Res., 16, 949–961.PubMedCrossRefGoogle Scholar
  4. 4.
    Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678.CrossRefGoogle Scholar
  5. 5.
    McDermid, H.E. and Morrow, B.E. (2002) Genomic disorders on 22q11. Am. J. Hum. Genet., 70, 1077–1088.PubMedCrossRefGoogle Scholar
  6. 6.
    Walsh, T., McClellan, J.M., McCarthy, S.E., Addington, A.M., Pierce, S.B., Cooper, G.M., et al. (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320, 539–543.PubMedCrossRefGoogle Scholar
  7. 7.
    Pritchard, J.K. (2001) Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet., 69, 124–137.PubMedCrossRefGoogle Scholar
  8. 8.
    Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O.P., Ingason, A., Steinberg, S., et al. (2008) Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–236.PubMedCrossRefGoogle Scholar
  9. 9.
    Scherer, S.W., Lee, C., Birney, E., Altshuler, D.M., Eichler, E.E., Carter, N.P., Hurles, M.E. and Feuk, L. (2007) Challenges and standards in integrating surveys of structural variation. Nat. Genet., 39, S7-S15.PubMedCrossRefGoogle Scholar
  10. 10.
    Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., et al. (2006) Global variation in copy number in the human genome. Nature, 444, 444–454.PubMedCrossRefGoogle Scholar
  11. 11.
    Emanuel, B.S. and Saitta, S.C. (2007) From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat. Rev. Genet., 8, 869–883.PubMedCrossRefGoogle Scholar
  12. 12.
    Khaja, R., Zhang, J., MacDonald, J.R., He, Y., Joseph-George, A.M., Wei, J., et al. (2006) Genome assembly comparison identifies structural variants in the human genome. Nat. Genet., 38, 1413–1418.PubMedCrossRefGoogle Scholar
  13. 13.
    Fredman, D., White, S.J., Potter, S., Eichler, E.E., Den Dunnen, J.T. and Brookes, A.J. (2004) Complex SNP-related sequence variation in segmental genome duplications. Nat. Genet., 36, 861–866.PubMedCrossRefGoogle Scholar
  14. 14.
    Shen, F., Huang, J., Fitch, K.R., Truong, V.B., Kirby, A., Chen, W., et al. (2008) Improved detection of global copy number variation using high density, non-polymorphic oligonucleotide probes. BMC Genet., 9, 27.PubMedCrossRefGoogle Scholar
  15. 15.
    Peiffer, D.A. and Gunderson, K.L. (2009) Design of tag SNP whole genome genotyping arrays. Methods Mol. Biol., 529, 51–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Colella, S., Yau, C., Taylor, J.M., Mirza, G., Butler, H., Clouston, P., Bassett, A.S., Seller, A., Holmes, C.C. and Ragoussis, J. (2007) QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res., 35, 2013–2025.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S.F., Hakonarson, H. and Bucan, M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res., 17, 1665–1674.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin, C.H., Huang, M.C., Li, L.H., Wu, J.Y., Chen, Y.T. and Fann, C.S. (2008) Genome-wide copy number analysis using copy number inferring tool (CNIT) and DNA pooling. Hum. Mutat., 29, 1055–1062.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu, B., Roos, J.L., Levy, S., van Rensburg, E.J., Gogos, J.A. and Karayiorgou, M. (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet., 40, 880–885.PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall, C.R., Noor, A., Vincent, J.B., Lionel, A.C., Feuk, L., Skaug, J., et al. (2008) Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet., 82, 477–488.PubMedCrossRefGoogle Scholar
  21. 21.
    Yau, C. and Holmes, C.C. (2008) CNV discovery using SNP genotyping arrays. Cytogenet. Genome Res., 123, 307–312.PubMedCrossRefGoogle Scholar
  22. 22.
    Casilli, F., Di Rocco, Z.C., Gad, S., Tournier, I., Stoppa-Lyonnet, D., Frebourg, T. and Tosi, M. (2002) Rapid detection of novel BRCA1 rearrangements in high-risk breast-ovarian cancer families using multiplex PCR of short fluorescent fragments. Hum. Mutat., 20, 218–226.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, Y.L., Savelli, S.L., Yang, Y., Zhou, B., Rovin, B.H., Birmingham, D.J., Nagaraja, H.N., Hebert, L.A. and Yu, C.Y. (2007) Sensitive and specific real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and RCCX modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes. J. Immunol., 179, 3012–3025.PubMedGoogle Scholar
  24. 24.
    Sellner, L.N. and Taylor, G.R. (2004) MLPA and MAPH: new techniques for detection of gene deletions. Hum. Mutat., 23, 413–419.PubMedCrossRefGoogle Scholar
  25. 25.
    Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007) Strong association of de novo copy number mutations with autism. Science, 316, 445–449.PubMedCrossRefGoogle Scholar
  26. 26.
    Pugh, T.J., Delaney, A.D., Farnoud, N., Flibotte, S., Griffith, M., Li, H.I., Qian, H., Farinha, P., Gascoyne, R.D. and Marra, M.A. (2008) Impact of whole genome amplification on analysis of copy number variants. Nucleic Acids Res., 36, e80.PubMedCrossRefGoogle Scholar
  27. 27.
    Bediaga, N.G., Alfonso-Sanchez, M.A., de Renobales, M., Rocandio, A.M., Arroyo, M. and de Pancorbo, M.M. (2008) GSTT1 and GSTM1 gene copy number analysis in paraffin-embedded tissue using quantitative real-time PCR. Anal. Biochem., 378, 221–223.PubMedCrossRefGoogle Scholar
  28. 28.
    Cukier, H.N., Pericak-Vance, M.A., Gilbert, J.R. and Hedges, D.J. (2009) Sample degradation leads to false-positive copy number variation calls in multiplex real-time polymerase chain reaction assays. Anal. Biochem., 386, 288–290.PubMedCrossRefGoogle Scholar
  29. 29.
    Curtis, D., Vine, A.E. and Knight, J. (2008) Study of regions of extended homozygosity provides a powerful method to explore haplotype structure of human populations. Ann. Hum. Genet., 72, 261–278.PubMedCrossRefGoogle Scholar
  30. 30.
    Bailey, J.A., Yavor, A.M., Massa, H.F., Trask, B.J. and Eichler, E.E. (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res., 11, 1005–1017.PubMedCrossRefGoogle Scholar
  31. 31.
    Silva, A.L. and Romao, L. (2009) The mammalian nonsense-mediated mRNA decay pathway: to decay or not to decay! Which players make the decision? FEBS Lett., 583, 499–505.PubMedCrossRefGoogle Scholar
  32. 32.
    Pan, Q., Shai, O., Lee, L.J., Frey, B.J. and Blencowe, B.J. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet., 40, 1413–1415.PubMedCrossRefGoogle Scholar
  33. 33.
    Rujescu, D., Ingason, A., Cichon, S., Pietilainen, O.P., Barnes, M.R., Toulopoulou, T., et al. (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet., 18, 988–996.PubMedGoogle Scholar
  34. 34.
    Rowen, L., Young, J., Birditt, B., Kaur, A., Madan, A., Philipps, D.L., et al. (2002) Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics, 79, 587–597.PubMedCrossRefGoogle Scholar
  35. 35.
    Beglopoulos, V., Montag-Sallaz, M., Rohlmann, A., Piechotta, K., Ahmad, M., Montag, D. and Missler, M. (2005) Neurexophilin 3 is highly localized in cortical and cerebellar regions and is functionally important for sensorimotor gating and motor coordination. Mol. Cell Biol., 25, 7278–7288.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu, Q., Dinu, I., Adewale, A.J., Potter, J.D. and Yasui, Y. (2007) Comparative evaluation of gene-set analysis methods. BMC Bioinformatics, 8, 431.PubMedCrossRefGoogle Scholar
  37. 37.
    Baranzini, S.E., Galwey, N.W., Wang, J., Khankhanian, P., Lindberg, R., Pelletier, D., et al. (2009) Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum. Mol. Genet. 18, 2078–2090.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Medicines Research CentreGlaxoSmithKline Research & Development LimitedStevenageUK
  2. 2.Division of Psychological Medicine and Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, King’s College LondonLondonUK

Personalised recommendations