Liposomes pp 29-50 | Cite as

Nanoliposomes: Preparation and Analysis

  • M. R. MozafariEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 605)


Nanoliposome, or submicron bilayer lipid vesicle, is a new technology for the encapsulation and delivery of bioactive agents. The list of bioactive material that can be incorporated to nanoliposomes is immense, ranging from pharmaceuticals to cosmetics and nutraceuticals. Because of their biocompatibility and biodegradability, along with their nanosize, nanoliposomes have potential applications in a vast range of fields, including nanotherapy (e.g. diagnosis, cancer therapy, gene delivery), cosmetics, food technology and agriculture. Nanoliposomes are able to enhance the performance of bioactive agents by improving their solubility and bioavailability, in vitro and in vivo stability, as well as preventing their unwanted interactions with other molecules. Another advantage of nanoliposomes is cell-specific targeting, which is a prerequisite to attain drug concentrations required for optimum therapeutic efficacy in the target site while minimising adverse effects on healthy cells and tissues. This chapter covers nanoliposomes, particularly with respect to their properties, preparation methods and analysis.

Key words

Cancer therapy Food nanotechnology Gene delivery Mozafari method Nanoliposomes Nanotherapy 







Dipalmitoyl phosphatidylcholine


Entrapment efficiency


Field flow fractionation


Lipid vesicles prepared by the heating method


High-performance liquid chromatography


Hydroxyl group


Large unilamellar vesicles


Multilamellar vesicles


Nuclear magnetic resonance




Scanning Probe Microscopy


Small unilamellar vesicles


Phase transition temperature


Thin layer chromatography


Melting temperature


  1. 1.
    Mozafari MR, Mortazavi SM (eds) (2005) Nanoliposomes: from fundamentals to recent developments. Trafford Publishing Ltd, Oxford, UKGoogle Scholar
  2. 2.
    Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H (2006) Review: recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 86:2038–2045CrossRefGoogle Scholar
  3. 3.
    Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VSM, Mozafari MR (2007) The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 38:804–818CrossRefPubMedGoogle Scholar
  4. 4.
    Nomura SM, Yoshikawa Y, Yoshikawa K, Dannenmuller O, Chasserot-Golaz S, Ourisson G, Nakatani Y (2001) Towards proto-cells: primitive lipid vesicles encapsulating giant DNA and its histone complex. ChemBioChem 2:457–459CrossRefPubMedGoogle Scholar
  5. 5.
    Pozzi G, Birault V, Werner B, Dannenmuller O, Nakatani Y, Ourisson G, Terakawa S (1996) Single-chain polyterpenyl phosphates form primitive membranes. Angew Chem Int Ed Engl 35:177–180CrossRefGoogle Scholar
  6. 6.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRefPubMedGoogle Scholar
  7. 7.
    Mozafari MR (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10:711–719PubMedGoogle Scholar
  8. 8.
    Mozafari MR (ed) (2006) Nanocarrier technologies: frontiers of nanotherapy. Springer, The NetherlandsGoogle Scholar
  9. 9.
    Zhai GX, Chen GG, Zhao Y, Lou HX, Zhang JS (2002) Study on preparation of low molecular weight heparin nanoliposomes and their oral absorption in rat. J China Pharm Univ 33:200–202Google Scholar
  10. 10.
    Bowtle W (2000) Lipid formulations for oral drug delivery. Pharm Tech Eur 12:20–30Google Scholar
  11. 11.
    New RRC (ed) (1990) Liposomes a practical approach. IRL/Oxford University Press, Oxford, UKGoogle Scholar
  12. 12.
    Reineccius G (1995) Liposomes for controlled release in the food industry. In: Risch S, Reineccius G (eds) Encapsulation and controlled release of food ingredients. American Chemical Society, Washington DC, pp 113–131CrossRefGoogle Scholar
  13. 13.
    Mozafari MR, Hasirci V (1998) Mechanism of calcium ion induced multilamellar vesicle-DNA interaction. J Microencapsul 15:55–65CrossRefPubMedGoogle Scholar
  14. 14.
    Barenholz Y, Lasic D (eds) (1996) Handbook of nonmedical applications of liposomes, vol III. CRC, Boca Raton, FLGoogle Scholar
  15. 15.
    Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRefPubMedGoogle Scholar
  16. 16.
    Gabizon AA, Barenholz Y, Bialer M (1993) Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 10:703–708CrossRefPubMedGoogle Scholar
  17. 17.
    Leserman L, Machy P, Zelphati O (1994) Immunoliposome-mediated delivery of nucleic acids: a review of our laboratory’s experience. J Liposome Res 4:107–119CrossRefGoogle Scholar
  18. 18.
    Jurima-Romet M, Barber RF, Demeester J, Shek PN (1990) Distribution studies of liposome-encapsulated glutathione administered to the lung. Int J Pharm 63:227–235CrossRefGoogle Scholar
  19. 19.
    Jurima-Romet M, Barber RF, Shek PN (1992) Liposomes and bronchoalveolar lavage fluid: release of vesicle-entrapped glutathione. Int J Pharm 88:201–210CrossRefGoogle Scholar
  20. 20.
    Pegg RB, Shahidi F (1999) Encapsulation and controlled release in food preservation. In: Shafiur Rahman M (ed) Handbook of food preservation. CRC, Boca Raton, FL, pp 611–665Google Scholar
  21. 21.
    Woodbury DJ, Richardson ES, Grigg AW, Welling RD, Knudson BH (2006) Reducing liposome size with ultrasound: bimodal size distributions. J Liposome Res 16:57–80CrossRefPubMedGoogle Scholar
  22. 22.
    Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832CrossRefGoogle Scholar
  23. 23.
    Szoka FC, Papahadjopoulos D (1981) Liposomes: preparation and characterization. In: Knight CG (ed) Liposomes: from physical structure to therapeutic application. Elsevier, Amsterdam, pp 51–82Google Scholar
  24. 24.
    Chatterjee S, Banerjee DK (2002) Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids. Methods Mol Biol 199:3–16PubMedGoogle Scholar
  25. 25.
    Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Charac­terization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812:55–65CrossRefGoogle Scholar
  26. 26.
    MacDonald RC, MacDonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu L (1991) Small volume extrusion apparatus for preparation of large unilamellar vesicles. Biochim Biophys Acta 1061:297–303CrossRefPubMedGoogle Scholar
  27. 27.
    Berger N, Sachse A, Bender J, Schubert R, Brandl M (2001) Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm 223:55–68CrossRefPubMedGoogle Scholar
  28. 28.
    Vemuri S, Yu CD, Wangsatorntanakun V, Roosdorp N (1990) Large-scale production of liposome by a microfluidizer. Drug Dev Ind Pharm 16:2243–2256CrossRefGoogle Scholar
  29. 29.
    Thompson AK, Mozafari MR, Singh H (2007) The properties of liposomes produced from milk fat globule membrane material using different techniques. Lait 87:349–360CrossRefGoogle Scholar
  30. 30.
    Jafari SM, He YH, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization – a comparison. Int J Food Prop 9:475–485CrossRefGoogle Scholar
  31. 31.
    Silvestri S, Ganguly N, Tabibi E (1992) Predicting the effect of non-ionic surfactants on dispersed droplet radii in submicron oil-in-water emulsions. Pharm Res 9:1347–1350CrossRefPubMedGoogle Scholar
  32. 32.
    Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry – a review. Int Dairy J 12:541–553CrossRefGoogle Scholar
  33. 33.
    Kim HY, Baianu IC (1991) Novel liposome microencapsulation techniques for food applications. Trends Food Sci Technol 2:55–61CrossRefGoogle Scholar
  34. 34.
    Sorgi FL, Huang L (1994) Large scale production of DC-Chol cationic liposomes by microfluidization. Int J Pharm 144:131–139CrossRefGoogle Scholar
  35. 35.
    Kikuchi H, Yamauchi H, Hirota S (1994) A polyol dilution method for mass production of liposomes. J Liposome Res 4:71–91CrossRefGoogle Scholar
  36. 36.
    Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70:95–111CrossRefPubMedGoogle Scholar
  37. 37.
    Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C (1999) Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 16:251–256CrossRefPubMedGoogle Scholar
  38. 38.
    Mozafari MR, Reed CJ, Rostron C (2007) Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Pharmazie 62:205–209PubMedGoogle Scholar
  39. 39.
    Dwivedi AM (2002) Residual solvent analysis in pharmaceuticals. Pharm Tech Eur 14:26–28Google Scholar
  40. 40.
    Silvestri S, Gabrielson G, Wu LL (1991) Effect of terminal block on the microfluidization induced degradation of model ABA block copolymer. Int J Pharm 71:65–71CrossRefGoogle Scholar
  41. 41.
    CenciaRohan L, Silvestri S (1993) Effect of solvent system on microfluidization-induced mechanical degradation. Int J Pharm 95:23–28CrossRefGoogle Scholar
  42. 42.
    Bodmeier R, Chen H (1993) Hydrolysis of cellulose acetate and cellulose acetate butyrate pseudolatexes prepared by a solvent evaporation microfluidization method. Drug Dev Ind Pharm 19:521–530CrossRefGoogle Scholar
  43. 43.
    Lagoueyte N, Paquin P (1998) Effects of microfluidization on the functional properties of xanthan Gum. Food Hydrocol 12:365–371CrossRefGoogle Scholar
  44. 44.
    Maa YF, Hsu CC (1999) Performance of sonication and microfluidization for liquid–liquid emulsification. Pharm Dev Technol 4:233–240CrossRefPubMedGoogle Scholar
  45. 45.
    Kasaai MR, Charlet G, Paquin P, Arul J (2003) Fragmentation of chitosan by microfluidization process. Innov Food Sci Emerg Tech 4:403–413CrossRefGoogle Scholar
  46. 46.
    Mozafari MR, Reed CJ, Rostron C, Kocum C, Piskin E (2002) Construction of stable anionic liposome-plasmid particles using the heating method: a preliminary investigation. Cell Mol Biol Lett 7:923–927PubMedGoogle Scholar
  47. 47.
    Mortazavi SM, Mohammadabadi MR, Khosravi-Darani K, Mozafari MR (2007) Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol 129:604–613CrossRefPubMedGoogle Scholar
  48. 48.
    Mozafari MR, Reed CJ, Rostron C (2007) Prospects of anionic nanolipoplexes in nanotherapy: transmission electron microscopy and light scattering studies. Micron 38:787–795CrossRefPubMedGoogle Scholar
  49. 49.
    Colas JC, Shi WL, Rao VSNM, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847CrossRefPubMedGoogle Scholar
  50. 50.
    Mozafari MR, Reed CJ, Rostron C, Martin DS (2004) Transfection of human airway epithelial cells using a lipid-based vector prepared by the heating method. J Aerosol Med 17:100Google Scholar
  51. 51.
    Mozafari MR, Reed CJ, Rostron C (2003) 5-fluorouracil encapsulation in colloidal lipid particles: entrapment, release and cytotoxicity evaluation in an airway cell line. Drug Delivery to the Lungs XIV, London, England, pp. 180–183Google Scholar
  52. 52.
    Ozer AY (2007) Applications of light and electron microscopic techniques in liposome research. In: Mozafari MR (ed) Nanomaterials and nanosystems for biomedical applications. Springer, Dordrecht, The Netherlands, pp 145–153CrossRefGoogle Scholar
  53. 53.
    Rizwan SB, Dong YD, Boyd BJ, Rades T, Hook S (2007) Characterisation of biconti­nuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38:478–485CrossRefPubMedGoogle Scholar
  54. 54.
    Edwards KA, Baeumner AJ (2006) Analysis of liposomes. Talanta 68:1432–1441CrossRefPubMedGoogle Scholar
  55. 55.
    Chandaroy P, Sen A, Hui SW (2001) Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release 76:27–37CrossRefPubMedGoogle Scholar
  56. 56.
    Mui B, Chow L, Hope MJ (2003) Extrusion technique to generate liposomes of defined size. Methods Enzymol 367:3–14CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Phosphagenics R&D LaboratoryClaytonAustralia

Personalised recommendations