Simultaneous Direct Identification of Genital Microorganisms in Voided Urine Using Multiplex PCR-Based Reverse Line Blot Assays

  • Michelle L. McKechnie
  • Fanrong Kong
  • Gwendolyn L. GilbertEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 943)


Our aim was to develop and evaluate sensitive methods that would allow simultaneous direct identification of multiple potential pathogens in clinical specimens for diagnosis and epidemiological studies, using a multiplex PCR-based reverse line blot assay. We have previously developed assays suitable for detection of bacterial respiratory and systemic pathogens. In this chapter we describe, in detail, a method developed to identify 14 genital microorganisms, for use in epidemiological studies of genital infection or colonization, using first voided urine specimens. The 14 urogenital pathogens or putative pathogens studied were Trichomonas vaginalis, Streptococcus pneumoniae, Neisseria gonorrhoeae, N. meningitidis, Chlamydia trachomatis, Ureaplasma parvum, U. urealyticum, Mycoplasma hominis, M. genitalium, Gardnerella vaginalis, Haemophilus influenzae, herpes simplex virus 1 and 2, and adenovirus. Two species-specific primer pairs and probes were designed for each target. The method was validated using a reference strain or a well-characterized clinical isolate of each target organism. In a clinical study among men attending sexual health clinics in Sydney, we used the assay to compare rates of detection of the 14 organisms in men with urethritis with those in asymptomatic controls and found the method to be sensitive, specific, convenient, and relatively inexpensive.

Key words

Multiplex PCR-based reverse line blot Genital microorganisms First void urine specimens 



Victor Weixiong provided some of the primer/probe designs. Dr Neisha Jeoffreys provided valuable advice and help with troubleshooting of initial problems, false positive results, and excessive background signals.


  1. 1.
    Chen MY, Donovan B (2005) Changes in testing methods for genital Chlamydia trachomatis in New South Wales, Australia. Sexual Health 2:251–253PubMedCrossRefGoogle Scholar
  2. 2.
    Markoulatos P, Siafakas N, Moncany M (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16:47–51PubMedCrossRefGoogle Scholar
  3. 3.
    Kong F, Gilbert GL (2006) Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB)—a practical epidemiological and diagnostic tool. Nat Protoc 1:2688–2680Google Scholar
  4. 4.
    Wang Y, Kong F, Yang Y, Gilbert GL (2008) A mulitplex PCR-based reverse line blot hybridisation (mPCR/RLB) assay for detection of bacterial respiratory pathogens in children with pneumonia. Pediatr Pulmonol 43:150–159PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Y, Kong F, Gilbert GL, Brown M, Gao W, Yu S, Yang Y (2008) Use of a multiplex PCR-based reverse line blot (mPCR/RLB) hybridisation assay for the rapid identifcation of bacterial pathogens. Clin Microbiol Infect Dis 14:155–160CrossRefGoogle Scholar
  6. 6.
    Mckechnie ML, Hillman RJ, Couldwell D, Kong F, Freedman EV, Wang H, Gilbert GL (2009) Simultaneous identification of 14 genital microorgranisms in urine by use of a mPCR-based reverse line blot assay. J Clin Microbiol 47:1871–1872PubMedCrossRefGoogle Scholar
  7. 7.
    Couldwell D, Gidding HF, Freedman EV, McKechnie ML, Biggs K, Sintchenko V, Gilbert GL (2010) Ureaplasma urealyticum is significantly associated with key symptoms and signs of non-gonococcal urethritis in heterosexual Sydney men. Int J STD AIDS 21:337–341PubMedCrossRefGoogle Scholar
  8. 8.
    World Health Organization. (2007) Fact sheet: Sexually transmitted infections. 110:1-4.Google Scholar
  9. 9.
    Scholes D, Stergachis A, Heidrich FE, Andrilla H, Holmes KK, Stamm WE (1996) Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. N Engl J Med 334:1362–1366PubMedCrossRefGoogle Scholar
  10. 10.
    Bradshaw CS, Tabrizi NS, Read RHT, Garland SM, Hopkins AC, Moss LL, Fairley KC (2006) Etiologies of nongonococcal urethritis: bacteria, viruses, and the association with orogenital exposure. J Infect Dis 193:336–345PubMedCrossRefGoogle Scholar
  11. 11.
    Bailey JV, Farquhar C, Owen C, Mangtani P (2004) Sexually transmitted infections in women who have sex with women. Sex Transm Infect 80:244–246PubMedCrossRefGoogle Scholar
  12. 12.
    Keane FEA, Thomas BJ, Whitaker L, Renton A, Taylor-Robinson D (1997) An association between non-gonococcal urethritis and bacterial vaginosis and the implications for patients and their sexual partners. Genitourin Med 73:373–377PubMedGoogle Scholar
  13. 13.
    Hagman M, Forslin L, Moi H, Danielsson D (1991) Neisseria meningitidis in specimens from urogenital sites. Sex Transm Dis 18:228–232PubMedCrossRefGoogle Scholar
  14. 14.
    Hardick J, Yang S, Lin S, Duncan D, Gaydos C (2003) Use of the Roche lightcycler instrument in a real-time PCR for Trichomonas vaginalis in urine samples from females and males. J Clin Microbiol 41:5619–5622PubMedCrossRefGoogle Scholar
  15. 15.
    Hartmann AA, Elsner P (1988) Urethritis caused by Neisseria meningitidis Group B: A case report. Sex Transm Dis 15:150–151PubMedCrossRefGoogle Scholar
  16. 16.
    Deguchi T, Yoshida T, Miyazawa T, Yasuda M, Tamaki M, Ishiko H, Maeda S (2004) Association of Ureaplasma urealyticum (Biovar 2) with nongonococcal urethritis. Sex Transm Dis 31:192–195PubMedCrossRefGoogle Scholar
  17. 17.
    Povlsen K, Bjornelius E, Lidbrink P, Lind I (2002) Relationship of Ureaplasma urealyticum Biovar 2 to nongonococcal urethritis. Eur J Clin Microbiol Infect Dis 21:97–101PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor-Robinson D (2007) The role of mycoplasmas in pregnancy outcomes. Best Pract Res Clin Obster Gynaecol 21:425–438CrossRefGoogle Scholar
  19. 19.
    Taylor-Robinson D, McCormak WM (1980) The genital mycoplasmas (first of two parts). N Engl J Med 302:1003–1010PubMedCrossRefGoogle Scholar
  20. 20.
    Koroglu M, Yakupogullari Y, Aydogan F (2007) A case of urethritis due to Streptococcus pneumoniae. Sex Transm Dis 34:1040PubMedCrossRefGoogle Scholar
  21. 21.
    Noble RC (1985) Colonisation of the urethra with Streptococcus pneumoniae: a case report. Genitourin Med 61:345–346PubMedGoogle Scholar
  22. 22.
    Quentin R, Musser JM, Mellouet M, Sizaret P-Y, Selander RK, Goudeau A (1989) Typing of urogenital, maternal, and neonatal isolates of Haemophilius influenzae and Haemophilius parainfluenzae in correlation with clinical source of isolation and evidence for a genital specificity of H. influenzae biotype IV. J Clin Microbiol 27:2286–2294PubMedGoogle Scholar
  23. 23.
    Sturm AW (1986) Haemophilius influenzae and Haemopilius parainfluenzae in Nongonococcal urethritis. J Infect Dis 153:165–167PubMedCrossRefGoogle Scholar
  24. 24.
    Jensen JS, Borre MB, Dohn B (2003) Detection of Mycoplasma genitalium by PCR amplification of the 16 S rRNA gene. J Clin Microbiol 41(1):261–266PubMedCrossRefGoogle Scholar
  25. 25.
    Mallard K, Schopfer K, Bodmer T (2005) Development of real-time PCR for the ­differential detection and quantification of Ureaplasma urealyticum and Ureaplasma ­parvum. J Microbiol Methods 60(1):13–19PubMedCrossRefGoogle Scholar
  26. 26.
    Zariffard MR, Saifuddin M, Sha BE, Spear GT (2002) Detection of bacterial vaginosis-related organisms by real-time PCR for Lactobacilli, Gardnerella vaginalis and Mycoplasma hominis. FEMS Immunol Med Microbiol 34(4):277–281PubMedCrossRefGoogle Scholar
  27. 27.
    Stevenson J, Hymas W, Hillyard D (2005) Effect of sequence polymorphisms on performance of two real-time PCR assays for detection of herpes simplex virus. J Clin Microbiol 43(5):2391–2398PubMedCrossRefGoogle Scholar
  28. 28.
    Allard A, Albinsson B, Wadell G (2001) Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. J Clin Microbiol 39(2):498–505PubMedCrossRefGoogle Scholar
  29. 29.
    Jordens JZ, Heckels JE (2005) A novel porA-based real-time PCR for detection of meningococcal carriage. J Med Microbiol 54(5):463–466PubMedCrossRefGoogle Scholar
  30. 30.
    Roth SB, Jalava J, Ruuskanen O, Ruohola A, Nikkari S (2004) Use of an oligonucleotide array for laboratory diagnosis of bacteria responsible for acute upper respiratory infections. J Clin Microbiol 42(9):4268–4274PubMedCrossRefGoogle Scholar
  31. 31.
    Llull D, López R, García E (2006) Characteristic signatures of the lytA gene provide a basis for rapid and reliable diagnosis of Streptococcus pneumoniae infections. J Clin Microbiol 44(4):1250–1256PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Michelle L. McKechnie
    • 1
    • 2
  • Fanrong Kong
    • 3
    • 2
  • Gwendolyn L. Gilbert
    • 1
    • 2
    Email author
  1. 1.Centre for Infectious Diseases and Microbiology, Institute of Clinical Pathology and Medical Research, Western Clinical SchoolUniversity of SydneySydneyAustralia
  2. 2.Westmead HospitalWestmeadAustralia
  3. 3.Centre for Infectious Diseases and Microbiology, Institute of Clinicals Pathology and Medical Research, Western Clinical SchoolUniversity of SydneySydneyAustralia

Personalised recommendations