Image Analysis and Quantitative Morphology

  • Carlos Alberto Mandarim-de-Lacerda
  • Caroline Fernandes-Santos
  • Marcia Barbosa Aguila
Part of the Methods in Molecular Biology book series (MIMB, volume 611)


Quantitative studies are increasingly found in the literature, particularly in the fields of development/evolution, pathology, and neurosciences. Image digitalization converts tissue images into a numeric form by dividing them into very small regions termed picture elements or pixels. Image analysis allows automatic morphometry of digitalized images, and stereology aims to understand the structural inner three-dimensional arrangement based on the analysis of slices showing two-dimensional information. To quantify morphological structures in an unbiased and reproducible manner, appropriate isotropic and uniform random sampling of sections, and updated stereological tools are needed. Through the correct use of stereology, a quantitative study can be performed with little effort; efficiency in stereology means as little counting as possible (little work), low cost (section preparation), but still good accuracy. This short text provides a background guide for non-expert morphologists.

Key words

Image analysis morphometry stereology volume density surface density length density disector 


  1. 1.
    Aherne, W.A. and Dunnill, M.S. (1982) Morphometry. Edward Arnold Publishers, London.Google Scholar
  2. 2.
    Mandarim-de-Lacerda, C.A. (2003) Stereological tools in biomedical research. An. Acad. Bras. Cienc. 75, 469–486.PubMedCrossRefGoogle Scholar
  3. 3.
    Gundersen, H.J. and Osterby, R. (1981) Optimizing sampling efficiency of stereological studies in biology: or ‘do more less well!’. J. Microsc. 121, 65–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Torres, T.S., Silva, G.D., Aguila, M.B., Carvalho, J.J., and Mandarim-de-Lacerda, C.A. (2008) Effects of rosiglitazone (a peroxysome proliferator-activated receptor gamma agonist) on the blood pressure and aortic structure in metabolically programmed (perinatal low protein) rats. Hypertens. Res. 31, 965–975.PubMedCrossRefGoogle Scholar
  5. 5.
    Catta-Preta, M., Oliveira, D.A., Mandarim-de-Lacerda, C.A., and Aguila, M.B. (2006) Adult cardiorenal benefits from postnatal fish oil supplement in rat offspring of low-protein pregnancies. Life Sci. 80, 219–229.PubMedCrossRefGoogle Scholar
  6. 6.
    Scherle, W. (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26, 57–60.PubMedGoogle Scholar
  7. 7.
    Weibel, E.R. (1979) Stereological Methods. Practical Methods for Biological Morphometry. Academic Press, New York.Google Scholar
  8. 8.
    Mandarim-de-Lacerda, C.A. and Penteado, C.V. (1988) Topographical and morphometrical study of the atrioventricular junctional area of the cardiac conduction system in the Macaca fascicularis Raffles, 1821. Anat. Anz. 167, 57–61.PubMedGoogle Scholar
  9. 9.
    Acer, N., Bayar, B., Basaloglu, H., Oner, E., Bayar, K., and Sankur, S. (2008) Unbiased estimation of the calcaneus volume using the Cavalieri principle on computed tomography images. Ann. Anat. 190, 452–460.PubMedCrossRefGoogle Scholar
  10. 10.
    Mattfeldt, T., Mall, G., Gharehbaghi, H., and Moller, P. (1990) Estimation of surface area and length with the orientator. J. Microsc. 159, 301–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Baddeley, A.J., Gundersen, H.J., and Cruz-Orive, L.M. (1986) Estimation of surface area from vertical sections J. Microsc. 142, 259–276.PubMedCrossRefGoogle Scholar
  12. 12.
    Weibel, E.R., Kistler, G.S., and Scherle, W.F. (1966) Practical stereological methods for morphometric cytology J. Cell. Biol. 30, 23–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Gundersen, H.J.G., Bendtsen, T.F., Korbo, L., Marcussen, N., Moller, A., Nielsen, K., Nyengaard, J.R., Pakkenberg, B., Sorensen, F.B., Vesterby, A., and West, M.J. (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96, 379–394.PubMedCrossRefGoogle Scholar
  14. 14.
    Gundersen, H.J. (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J. Microsc. 111, 219–227.CrossRefGoogle Scholar
  15. 15.
    Elias, H., Hyde, D.M., and Scheaffer, R.L. (1983) A Guide to Practical Stereology. Karger, Basel, Switzerland.Google Scholar
  16. 16.
    Sterio, D.C. (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector J. Microsc. 134, 127–136.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carlos Alberto Mandarim-de-Lacerda
    • 1
  • Caroline Fernandes-Santos
    • 1
  • Marcia Barbosa Aguila
    • 1
  1. 1.Laboratory of Morphometry and Cardiovascular MorphologyInstitute of Biology, Biomedical Center, State University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations