Immunohistochemical Detection of Tumour Hypoxia

  • Richard J. Young
  • Andreas Möller
Part of the Methods in Molecular Biology book series (MIMB, volume 611)


In this chapter, we describe the use of immunohistochemical methods to detect hypoxia in tumour tissue sections, utilising antibodies specific for endogenous proteins hypoxia inducible factor 1 alpha (Hif1α) and glucose transporter 1 (Glut-1) and the exogenous compound pimonidazole (Pim). Immunohistochemistry is routinely used both diagnostically and in research to label and identify specific cellular proteins of interest. The methods described here enable staining of hypoxic cells and tissue in formalin-fixed paraffin-embedded (FFPE) tumour tissue sections that can then be visualised either using chromogenic or fluorescence detection. All three methods can be used on human, xenograft, or mouse tumour tissue.

Key words

Hypoxia tumour immunohistochemistry pimonidazole Hif1α Glut-1 


  1. 1.
    Troost, E.G., Laverman, P., Philippens, M.E.P., Lok, J., van der Kogel, A.J., Oyen, W.J.G., Boerman, O.C., Kaanders, J.H.A.M., and Bussink, J. (2008) Correlation of [18F]FMISO autoradiography and pimonidazole immunohistochemistry in human head and neck carcinoma xenografts. Eur. J. Nucl. Med. Mol. Imaging 35, 1803–1811.PubMedCrossRefGoogle Scholar
  2. 2.
    Ljungkvist, A.S.E., Bussink, J., Kaanders, J.H.A.M., and van der Kogel, A.J. (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat. Res. 167, 127–145.PubMedCrossRefGoogle Scholar
  3. 3.
    Le, Q. (2007) Identifying and targeting hypoxia in head and neck cancer: a brief overview of current approaches. Int. J. Radiat. Oncol. Biol. Phys. 69, S56–S58.PubMedCrossRefGoogle Scholar
  4. 4.
    Rischin, D., Fisher, R., Peters, L., Corry, J., and Hicks, R. (2007) Hypoxia in head and neck cancer: studies with hypoxic cytotoxins. Int. J. Radiat. Oncol. Biol. Phys., 69, S61–S63.PubMedCrossRefGoogle Scholar
  5. 5.
    Vordermark, D. and Brown, M. (2003) Endogenous markers of tumor hypoxia: predictors of clinical radiation resistance? Strahlenther. Onkol. 179, 801–811.PubMedCrossRefGoogle Scholar
  6. 6.
    He, F., Xuelong, D., Bixiu, W., Yueping, L., Xiaorong, S., Ligang, X., Akiko, M., Huang, Y., Chen, Q., Zanzonico, P.B., Ling, C.C., and Lil, G.C. (2008) Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res. 68, 8597–8606.PubMedCrossRefGoogle Scholar
  7. 7.
    Tian, M., Zhang, H., Nakasone, Y., Mogi, K., and Endo, K. (2004) Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation in a PET study. Eur. J. Nucl. Med. Mol. Imaging 31, 5–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Solomon, B., Binns, D., Roselt, P., Weibe, L.I., McArthur, G.A., Cullinane, C., and Hicks, R.J. (2005) Modulation of intratumoral hypoxia by the epidermal growth factor receptor inhibitor gefitinib detected using small animal PET imaging. Mol. Cancer. Ther. 4, 1417–1422.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Richard J. Young
    • 1
  • Andreas Möller
    • 2
  1. 1.Research Division, Translational Research LaboratoryPeter MacCallum Cancer CentreMelbourneAustralia
  2. 2.Research Division, Cancer Genomics and Biochemistry LaboratoryPeter MacCallum Cancer CentreMelbourneAustralia

Personalised recommendations