Cell-Free Protein Production pp 187-212

Part of the Methods in Molecular Biology book series (MIMB, volume 607)

Strategies for the Cell-Free Expression of Membrane Proteins

  • Sina Reckel
  • Solmaz Sobhanifar
  • Florian Durst
  • Frank Löhr
  • Vladimir A. Shirokov
  • Volker Dötsch
  • Frank Bernhard


Cell-free expression offers an interesting alternative method to produce membrane proteins in high amounts. Elimination of toxicity problems, reduced proteolytic degradation and a nearly unrestricted option to supply potentially beneficial compounds like cofactors, ligands or chaperones into the reaction are general advantages of cell-free expression systems. Furthermore, the membrane proteins may be translated directly into appropriate hydrophobic and membrane-mimetic surrogates, which might offer significant benefits for the functional folding of the synthesized proteins. Cell-free expression is a rapidly developing and highly versatile technique and several systems of both, prokaryotic and eukaryotic origins, have been established. We provide protocols for the cell-free expression of membrane proteins in different modes including their expression as precipitate as well as their direct synthesis into detergent micelles or lipid bilayers.

Key words:

Continuous exchange cell-free expression S30 extract P-CF D-CF L-CF Detergents Lipids NMR Transmembrane segments Stable isotope labelling 


  1. 1.
    Kim, T. W., Keum, J. W., Oh, I. S., Choi, C. Y., Kim, H. C., and Kim, D. M. (2007) An economical and highly productive cell-free protein synthesis system utilizing fructose-1, 6-bisphosphate as an energy source. J. Biotechnol. 130, 389–393.CrossRefPubMedGoogle Scholar
  2. 2.
    Shirokov, V. A., Kommer, A., Kolb, V. A., and Spirin, A. S. (2007) Continuous-exchange protein-synthesizing systems. Methods Mol. Biol. 375, 19–55.CrossRefPubMedGoogle Scholar
  3. 3.
    Gourdon, P., Alfredsson, A., Pedersen, A., Malmerberg, E., Nyblom, M., Widell, M., Berntsson, R., Pinhassi, J., Braiman, M., Hansson, O., Bonander, N., Karlsson, G., and Neutze, R. (2008) Optimized in vitro and in vivo expression of proteorhodopsin: a seven-transmembrane proton pump. Protein Expr. Purif. 58, 103–113.CrossRefPubMedGoogle Scholar
  4. 4.
    Keller, T., Schwarz, D., Bernhard, F., Dotsch, V., Hunte, C., Gorboulev, V., and Koepsell, H. (2008) Cell free expression and functional reconstitution of eukaryotic drug transporters. Biochemistry 47, 4552–4564.CrossRefPubMedGoogle Scholar
  5. 5.
    Elbaz, Y., Steiner-Mordoch, S., Danieli, T., and Schuldiner, S. (2004) In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc. Natl. Acad. Sci. USA 101, 1519–1524.CrossRefPubMedGoogle Scholar
  6. 6.
    Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dotsch, V., and Bernhard, F. (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J. 272, 6024–6038.CrossRefPubMedGoogle Scholar
  7. 7.
    Kalmbach, R., Chizhov, I., Schumacher, M. C., Friedrich, T., Bamberg, E., and Engelhard, M. (2007) Functional cell-free synthesis of a seven helix membrane protein: in situ insertion of bacteriorhodopsin into liposomes. J. Mol. Biol. 371, 639–648.CrossRefPubMedGoogle Scholar
  8. 8.
    Wuu, J. J., and Swartz, J. R. (2008) High yield cell-free production of integral membrane proteins without refolding or detergents. Biochim. Biophys. Acta 1778, 1237–1250.CrossRefPubMedGoogle Scholar
  9. 9.
    Katzen, F. (2008) Cell-free protein expression of membrane proteins using nanolipoprotein particles. Biotechniques 45, 190.CrossRefPubMedGoogle Scholar
  10. 10.
    Reckel, S., Sobhanifar, S., Schneider, B., Junge, F., Schwarz, D., Durst, F., Lohr, F., Guntert, P., Bernhard, F., and Dotsch, V. (2008) Transmembrane segment enhanced labeling as a tool for the backbone assignment of alpha-helical membrane proteins. Proc. Natl. Acad. Sci. USA 105, 8262–8267.CrossRefPubMedGoogle Scholar
  11. 11.
    Koglin, A., Klammt, C., Trbovic, N., Schwarz, D., Schneider, B., Schafer, B., Lohr, F., Bernhard, F., and Dotsch, V. (2006) Combination of cell-free expression and NMR spectroscopy as a new approach for structural investigation of membrane proteins. Magn. Reson. Chem. 44 Spec No, S17–S23.CrossRefPubMedGoogle Scholar
  12. 12.
    Li, Y., Wang, E., and Wang, Y. (1999) A modified procedure for fast purification of T7 RNA polymerase. Protein Expr. Purif. 16, 355–358.CrossRefPubMedGoogle Scholar
  13. 13.
    Schwarz, D., Junge, F., Durst, F., Frolich, N., Schneider, B., Reckel, S., Sobhanifar, S., Dotsch, V., and Bernhard, F. (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat. Protoc. 2, 2945–2957.CrossRefPubMedGoogle Scholar
  14. 14.
    Chumpolkulwong, N., Sakamoto, K., Hayashi, A., Iraha, F., Shinya, N., Matsuda, N., Kiga, D., Urushibata, A., Shirouzu, M., Oki, K., Kigawa, T., and Yokoyama, S. (2006) Translation of ‘rare’ codons in a cell-free protein synthesis system from Escherichia coli. J. Struct. Funct. Genomics 7, 31–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Krueger-Koplin, R. D., Sorgen, P. L., Krueger-Koplin, S. T., Rivera-Torres, I. O., Cahill, S. M., Hicks, D. B., Grinius, L., Krulwich, T. A., and Girvin, M. E. (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J. Biomol. NMR 28, 43–57.CrossRefPubMedGoogle Scholar
  16. 16.
    Chill, J. H., Louis, J. M., Miller, C., and Bax, A. (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci. 15, 684–698.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee, S., Howell, S. B., and Opella, S. J. (2007) NMR and mutagenesis of human copper transporter 1 (hCtr1) show that Cys-189 is required for correct folding and dimerization. Biochim. Biophys. Acta 1768, 3127–3134.CrossRefPubMedGoogle Scholar
  18. 18.
    Schnell, J. R., and Chou, J. J. (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595.CrossRefPubMedGoogle Scholar
  19. 19.
    Malia, T. J., and Wagner, G. (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46, 514–525.CrossRefPubMedGoogle Scholar
  20. 20.
    Roosild, T. P., Greenwald, J., Vega, M., Castronovo, S., Riek, R., and Choe, S. (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307, 1317–1321.CrossRefPubMedGoogle Scholar
  21. 21.
    Schubert, M., Kolbe, M., Kessler, B., Oesterhelt, D., and Schmieder, P. (2002) Heteronuclear multidimensional NMR spectroscopy of solubilized membrane proteins: resonance assignment of native bacteriorhodopsin. Chembiochem 3, 1019–1023.CrossRefPubMedGoogle Scholar
  22. 22.
    Takeuchi, K., Takahashi, H., Kawano, S., and Shimada, I. (2007) Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J. Biol. Chem. 282, 15179–15186.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sina Reckel
    • 1
  • Solmaz Sobhanifar
    • 1
  • Florian Durst
    • 1
  • Frank Löhr
    • 1
  • Vladimir A. Shirokov
    • 2
  • Volker Dötsch
    • 1
  • Frank Bernhard
    • 1
  1. 1.Centre for Biomolecular Magnetic ResonanceInstitute for Biophysical Chemistry, University of Frankfurt/MainFrankfurt/MainGermany
  2. 2.Institute of Protein Research, Russian Academy of SciencesPushchinoRussia

Personalised recommendations