Analgesia pp 445-456 | Cite as

Measuring Membrane Protein Interactions Using Optical Biosensors

  • Joseph RuckerEmail author
  • Candice Davidoff
  • Benjamin J. Doranz
Part of the Methods in Molecular Biology book series (MIMB, volume 617)


Membrane proteins, such as G protein-coupled receptors (GPCRs) and ion channels, represent important but technically challenging targets for the management of pain and other diseases. Studying their interactions has enabled the development of new therapeutics, diagnostics, and research reagents, but biophysical manipulation of membrane proteins is often difficult because of the requirement of most membrane proteins for an intact lipid bilayer. Here, we describe the use of virus-like particles as presentation vehicles for cellular membrane proteins (“Lipoparticles”). The methods for using Lipoparticles on optical biosensors, such as the BioRad ProteOn XPR36, are discussed as a means to characterize the kinetics, affinity, and specificity of antibody interactions using surface plasmon resonance detection.

Key words

Biosensor Virus-like particle Membrane protein GPCR 



We thank Sharon Willis for her help with Lipoparticle production and biosensor optimization and Laura Moriarty (BioRad) and Mohammed Yousef (BioRad) for their helpful discussions.


  1. 1.
    Woolf CJ, Ma Q (2007) Nociceptors-noxious stimulus detectors. Neuron 55(3):353–364PubMedCrossRefGoogle Scholar
  2. 2.
    Navratilova I, Dioszegi M, Myszka DG (2006) Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal Biochem 355(1):132–139PubMedCrossRefGoogle Scholar
  3. 3.
    Navratilova I, Sodroski J, Myszka DG (2005) Solubilization, stabilization, and purification of chemokine receptors using biosensor technology. Anal Biochem 339(2):271–281PubMedCrossRefGoogle Scholar
  4. 4.
    Rice PJ et al (2002) Human monocyte scavenger receptors are pattern recognition receptors for (1->3)-beta-D-glucans. J Leukoc Biol 72(1):140–146PubMedGoogle Scholar
  5. 5.
    Stenlund P, Babcock GJ, Sodroski J, Myszka DG (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem 316(2):243–250PubMedCrossRefGoogle Scholar
  6. 6.
    Mobini R et al (2000) A monoclonal antibody directed against an autoimmune epitope on the human beta1-adrenergic receptor recognized in idiopathic dilated cardiomyopathy. . Hybridoma 19(2):135-142 (in eng)PubMedCrossRefGoogle Scholar
  7. 7.
    Peter JC, Eftekhari P, Billiald P, Wallukat G, Hoebeke J (2003) scFv single chain antibody variable fragment as inverse agonist of the beta2-adrenergic receptor. (Translated from eng). J Biol Chem 278(38):36740-36747 (in eng)PubMedCrossRefGoogle Scholar
  8. 8.
    Day PW et al (2007) A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods 4(11):927–929PubMedCrossRefGoogle Scholar
  9. 9.
    Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. (Translated from eng). Biochemistry 47(20):5481-5492 (in eng)PubMedCrossRefGoogle Scholar
  10. 10.
    Canziani G et al (1999) Exploring biomolecular recognition using optical biosensors. (Translated from eng). Methods 19(2):253-269 (in eng)PubMedCrossRefGoogle Scholar
  11. 11.
    Willis S et al (2008) Virus-like particles as quantitative probes of membrane protein interactions. Biochemistry 47(27):6988–6990PubMedCrossRefGoogle Scholar
  12. 12.
    Bravman T et al (2006) Exploring “one-shot” kinetics and small molecule analysis using the ProteOn XPR36 array biosensor. (Translated from eng). Anal Biochem 358(2):281-288 (in eng)PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffman TL, Canziani G, Jia L, Rucker J, Doms RW (2000) A biosensor assay for studying ligand-membrane receptor interactions: binding of antibodies and HIV-1 Env to chemokine receptors. (Translated from eng). Proc Natl Acad Sci USA 97(21):11215-11220 (in eng)PubMedCrossRefGoogle Scholar
  14. 14.
    Rucker J (2003) Optical biosensor assay using retroviral receptor pseudotypes. Methods Mol Biol 228:317–328PubMedGoogle Scholar
  15. 15.
    Karlsson R, Katsamba PS, Nordin H, Pol E, Myszka DG (2006) Analyzing a kinetic titration series using affinity biosensors. (Translated from eng). Anal Biochem 349(1):136-147 (in eng)PubMedCrossRefGoogle Scholar
  16. 16.
    Green RJ, Davies MC, Roberts CJ, Tendler SJ (1998) A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers. (Translated from eng). J Biomed Mater Res 42(2):165-171 (in eng)PubMedCrossRefGoogle Scholar
  17. 17.
    Segura MM et al (2008) Identification of host proteins associated with retroviral vector particles by proteomic analysis of highly purified vector preparations. J Virol 82(3):1107–1117PubMedCrossRefGoogle Scholar
  18. 18.
    Myszka DG, He X, Dembo M, Morton TA, Goldstein B (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. (Translated from eng). Biophys J 75(2):583-594 (in eng)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joseph Rucker
    • 1
    Email author
  • Candice Davidoff
    • 1
  • Benjamin J. Doranz
    • 1
  1. 1.Integral Molecular, Inc.PhiladelphiaUSA

Personalised recommendations