Analgesia pp 395-420 | Cite as

Genetic Polymorphisms and Human Sensitivity to Opioid Analgesics

  • Daisuke Nishizawa
  • Masakazu Hayashida
  • Makoto Nagashima
  • Hisashi Koga
  • Kazutaka IkedaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 617)


Opioid analgesics are commonly used for the treatment of acute as well as chronic, moderate to severe pain. Well-known, however, is the wide interindividual variability in sensitivity to opioids that exists, which has often been a critical problem in pain treatment. To date, only a limited number of studies have addressed the relationship between human genetic variations and sensitivity to opioids, and such studies are still in their early stages. Therefore, revealing the relationship between genetic variations in many candidate genes and individual differences in sensitivity to opioids will provide valuable information for appropriate individualization of opioid doses required for adequate pain control. Although the methodologies for such association studies can be diverse, here we summarize protocols for investigating the association between genetic polymorphisms and sensitivity to opioids in human volunteers and patients undergoing painful surgery.

Key words

Analgesics Genetic polymorphisms Single nucleotide polymorphism (SNP) Genotype-phenotype association Haplotype Opioids Opiates Pain relief Personalized medicine Pharmacogenomics 



We acknowledge Mr. Michael Arends for his assistance with editing the manuscript. This work was supported by grants from the Ministry of Health, Labour and Welfare of Japan (H17-Pharmaco-001, H19-Iyaku-023), the Ministry of Education, Culture, Sports, Science and Technology of Japan (20602020, 19659405, 20390162), The Naito Foundation, and The Mitsubishi Foundation.


  1. 1.
    Ikeda K, Ide S, Han W, Hayashida M, Uhl GR, Sora I (2005) How individual sensitivity to opiates can be predicted by gene analyses. Trends Pharmacol Sci 26:311–317PubMedCrossRefGoogle Scholar
  2. 2.
    Coulbault L, Beaussier M, Verstuyft C, Weickmans H, Dubert L, Trégouet D, Descot C, Parc Y, Lienhart A, Jaillon P, Becquemont L (2006) Environmental and genetic factors asso­ciated with morphine response in the postoperative period. Clin Pharmacol Ther 79:316–324PubMedCrossRefGoogle Scholar
  3. 3.
    Bruehl S, Chung OY, Donahue BS, Burns JW (2006) Anger regulation style, postoperative pain, and relationship to the A118G mu opioid receptor gene polymorphism: a preliminary study. J Behav Med 29:161–169PubMedCrossRefGoogle Scholar
  4. 4.
    Chou WY, Wang CH, Liu PH, Liu CC, Tseng CC, Jawan B (2006) Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 105:334–337PubMedCrossRefGoogle Scholar
  5. 5.
    Chou WY, Yang LC, Lu HF, Ko JY, Wang CH, Lin SH, Lee TH, Concejero A, Hsu CJ (2006) Association of μ-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol Scand 50:787–792PubMedCrossRefGoogle Scholar
  6. 6.
    Klepstad P, Rakvåg TT, Kaasa S, Holthe M, Dale O, Borchgrevink PC, Baar C, Vikan T, Krokan HE, Skorpen F (2004) The 118 A > G polymorphism in the human μ-opioid receptor gene may increase morphine requirements in patients with pain caused by malignant disease. Acta Anaesthesiol Scand 48:1232–1239PubMedCrossRefGoogle Scholar
  7. 7.
    Hayashida M, Nagashima M, Satoh Y, Katoh R, Tagami M, Ide S, Kasai S, Nishizawa D, Ogai Y, Hasegawa J, Komatsu H, Sora I, Fukuda K, Koga H, Hanaoka K, Ikeda K (2008) Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics 9:1605–1616PubMedCrossRefGoogle Scholar
  8. 8.Fukuda K, Hayashida M, Ide S, Saita N, Kokita Y, Kasai S, Nishizawa D, Ogai Y, Hasegawa J, Nagashima M, Tagami M, Komatsu H, Sora I, Koga H, Kaneko Y, Ikeda K (2009) Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain 147:194–201PubMedCrossRefGoogle Scholar
  9. 9.
    Dripps RD (1963) New classification of physical status. Anesthesiology 24:111Google Scholar
  10. 10.
    Vinik HR, Kissin I (1998) Rapid develop­ment of tolerance to analgesia during remifentanil infusion in humans. Anesth Analg 86:1307–1311PubMedGoogle Scholar
  11. 11.
    Wu CL (2005) Acute postoperative pain. In: Miller RD (ed) Miller’s anesthesia, 6th edn. Elsevier/Churchill-Livingstone, Philadelphia, pp 2729–2762Google Scholar
  12. 12.
    Shi MM, Bleavins MR, de la Iglesia FA (1999) Technologies for detecting genetic polymorphisms in pharmacogenomics. Mol Diagn 4:343–351PubMedCrossRefGoogle Scholar
  13. 13.
    Syvänen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942PubMedCrossRefGoogle Scholar
  14. 14.
    Shi MM (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 47:164–172PubMedGoogle Scholar
  15. 15.
    Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96PubMedCrossRefGoogle Scholar
  16. 16.
    Jannetto PJ, Laleli-Sahin E, Wong SH (2004) Pharmacogenomic genotyping methodologies. Clin Chem Lab Med 42:1256–1264PubMedCrossRefGoogle Scholar
  17. 17.
    Nishizawa D, Nagashima M, Katoh R, Satoh Y, Tagami M, Kasai S, Ogai Y, Han W, Hasegawa J, Shimoyama N, Sora I, Hayashida M, Ikeda K (2009) Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS ONE 4:e7060PubMedCrossRefGoogle Scholar
  18. 18.
    Germer S, Higuchi R (1999) Single-tube genotyping without oligonucleotide probes. Genome Res 9:72–78PubMedGoogle Scholar
  19. 19.
    Myakishev MV, Khripin Y, Hu S, Hamer DH (2001) High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res 11:163–169PubMedCrossRefGoogle Scholar
  20. 20.
    Nishizawa D, Han W, Hasegawa J, Ishida T, Numata Y, Sato T, Kawai A, Ikeda K (2006) Association of μ-opioid receptor gene polymorphism A118G with alcohol dependence in a Japanese population. Neuropsychobiology 53:137–141PubMedCrossRefGoogle Scholar
  21. 21.
    Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362PubMedCrossRefGoogle Scholar
  22. 22.
    Imai K, Ogai Y, Nishizawa D, Kasai S, Ikeda K, Koga H (2007) A novel SNP detection technique utilizing a multiple primer extension (MPEX) on a phospholipid polymer-coated surface. Mol Biosyst 3:547–553PubMedCrossRefGoogle Scholar
  23. 23.
    Ide S, Kobayashi H, Ujike H, Ozaki N, Sekine Y, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Iwata N, Tanaka K, Shen H, Iwahashi K, Itokawa M, Minami M, Satoh M, Ikeda K, Sora I (2006) Linkage disequilibrium and association with methamphetamine dependence/psychosis of μ-opioid receptor gene polymorphisms. Pharmacogenomics J 6:179–188PubMedCrossRefGoogle Scholar
  24. 24.
    Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791PubMedCrossRefGoogle Scholar
  25. 25.
    Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120PubMedCrossRefGoogle Scholar
  26. 26.
    Nyholt DR (2001) Genetic case-control association studies: correcting for multiple testing. Hum Genet 109:564–567PubMedCrossRefGoogle Scholar
  27. 27.
    Perneger TV (1998) What’s wrong with Bonferroni adjustments. BMJ 316:1236–1238PubMedCrossRefGoogle Scholar
  28. 28.
    Curtis D, Xu K (2007) Minor differences in haplotype frequency estimates can produce very large differences in heterogeneity test statistics. BMC Genet 8:38PubMedCrossRefGoogle Scholar
  29. 29.
    Mooney S (2005) Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform 6:44–56PubMedCrossRefGoogle Scholar
  30. 30.
    Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28:352–355PubMedCrossRefGoogle Scholar
  31. 31.
    Fredman D, Siegfried M, Yuan YP, Bork P, Lehväslaiho H, Brookes AJ (2002) HGVbase: a human sequence variation database emphasizing data quality and a broad spectrum of data sources. Nucleic Acids Res 30:387–391PubMedCrossRefGoogle Scholar
  32. 32.
    International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  33. 33.
    Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86:248–249Google Scholar
  34. 34.
    Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  35. 35.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265PubMedCrossRefGoogle Scholar
  36. 36.
    Abecasis GR, Cookson WO (2000) GOLD: graphical overview of linkage disequilibrium. Bioinformatics 16:182–183PubMedCrossRefGoogle Scholar
  37. 37.
    Niu T, Qin ZS, Xu X, Liu JS (2002) Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70:157–169PubMedCrossRefGoogle Scholar
  38. 38.
    de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37:1217–1223PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang K, Jin L (2003) HaploBlockFinder: haplotype block analyses. Bioinformatics 19:1300–1301PubMedCrossRefGoogle Scholar
  40. 40.
    Zhao JH, Lissarrague S, Essioux L, Sham PC (2002) GENECOUNTING: haplotype analysis with missing genotypes. Bioinformatics 18:1694–1695PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, Sun F (2005) HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics 21:131–134PubMedCrossRefGoogle Scholar
  42. 42.
    Greenspan G, Geiger D (2004) High density linkage disequilibrium mapping using models of haplotype block variation. Bioinformatics 20(Suppl 1):i137-i144PubMedCrossRefGoogle Scholar
  43. 43.
    Shimo-onoda K, Tanaka T, Furushima K, Nakajima T, Toh S, Harata S, Yone K, Komiya S, Adachi H, Nakamura E, Fujimiya H, Inoue I (2002) Akaike’s information criterion for a measure of linkage disequilibrium. J Hum Genet 47:649–655PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao JH, Curtis D, Sham PC (2000) Model-free analysis and permutation tests for allelic associations. Hum Hered 50:133–139PubMedCrossRefGoogle Scholar
  45. 45.
    Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  46. 46.
    Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91PubMedCrossRefGoogle Scholar
  47. 47.
    Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  48. 48.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434PubMedCrossRefGoogle Scholar
  49. 49.
    Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epide­miol 25:115–121PubMedCrossRefGoogle Scholar
  50. 50.
    Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150PubMedCrossRefGoogle Scholar
  51. 51.
    Epstein MP, Satten GA (2003) Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet 73:1316–1329PubMedCrossRefGoogle Scholar
  52. 52.
    Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered 54:22–33PubMedCrossRefGoogle Scholar
  53. 53.
    Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21:35–50PubMedCrossRefGoogle Scholar
  54. 54.
    Zhao LP, Li SS, Khalid N (2003) A method for the assessment of disease associa­tions with single-nucleotide polymorphism haplotypes and environmental variables in case-control studies. Am J Hum Genet 72:1231–1250PubMedCrossRefGoogle Scholar
  55. 55.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Daisuke Nishizawa
    • 1
  • Masakazu Hayashida
    • 2
  • Makoto Nagashima
    • 3
  • Hisashi Koga
    • 4
  • Kazutaka Ikeda
    • 1
    Email author
  1. 1.Division of PsychobiologyTokyo Institute of PsychiatryTokyoJapan
  2. 2.Department of AnesthesiologySaitama Medical University International Medical CenterHidakaJapan
  3. 3.Department of SurgeryToho University Sakura Medical CenterSakuraJapan
  4. 4.Laboratory of Medical Genomics, Department of Human Genome TechnologyKazusa DNA Research InstituteKisarazuJapan

Personalised recommendations