Bioluminescence pp 193-202

Part of the Methods in Molecular Biology™ book series (MIMB, volume 574)

Bioluminescence Analysis of Smad-Dependent TGF-β Signaling in Live Mice

  • Jian Luo
  • Tony Wyss-Coray
Protocol

Abstract

TGF-β signaling via the Smad2/3 pathway has key roles in development and tissue homeostasis. Perturbations of the TGF-β signaling are involved in the pathogenesis of many human diseases, including cancer, fibrotic disorders, developmental defects, and neurodegeneration. To study the temporal and spatial patterns of Smad2/3-dependent signaling in living animals, we engineered transgenic mice with a Smad-responsive luciferase reporter (SBE-luc mice). Smad2/3-dependent signaling can be assessed non-invasively in living mice by bioluminescence imaging. To identify the cellular source of the bioluminescence signal, we generated new reporter mice expressing a trifusion protein containing luciferase, red fluorescent protein (RFP), and thymidine kinase under the control of the same SBE promoter (SBE-lucRT mice). SBE-luc and SBE-lucRT mice can be used to study temporal, tissue-specific activation of Smad2/3-dependent signaling in living mice as well as for the identification of endogenous or synthetic modulators of this pathway.

Key words

TGF-β Smad bioluminescence imaging in vivo luciferase immunofluorescence 

References

  1. 1.
    Dennler, S., Goumans, M. J., and ten Dijke, P. (2002) Transforming growth factor beta signal transduction. J Leukoc Biol 71, 731–740.PubMedGoogle Scholar
  2. 2.
    Massague, J., Blain, S. W., and Lo, R. S. (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309.PubMedCrossRefGoogle Scholar
  3. 3.
    Shi, Y., and Massague, J. (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700.PubMedCrossRefGoogle Scholar
  4. 4.
    Mazerbourg, S., Klein, C., Roh, J., Kaivo-Oja, N., Mottershead, D. G., Korchynskyi, O., Ritvos, O., and Hsueh, A. J. (2004) Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol 18, 653–665.PubMedCrossRefGoogle Scholar
  5. 5.
    Oh, S. P., Yeo, C. Y., Lee, Y., Schrewe, H., Whitman, M., and Li, E. (2002) Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes Dev 16, 2749–2754.PubMedCrossRefGoogle Scholar
  6. 6.
    Rebbapragada, A., Benchabane, H., Wrana, J. L., Celeste, A. J., and Attisano, L. (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23, 7230–7242.PubMedCrossRefGoogle Scholar
  7. 7.
    Reissmann, E., Jornvall, H., Blokzijl, A., Andersson, O., Chang, C., Minchiotti, G., Persico, M. G., Ibanez, C. F., and Brivanlou, A. H. (2001) The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 15, 2010–2022.PubMedCrossRefGoogle Scholar
  8. 8.
    Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R., and Sporn, M. B. (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–625.PubMedCrossRefGoogle Scholar
  9. 9.
    Kim, J. S., Yoon, S. S., Kim, Y. H., and Ryu, J. S. (1996) Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute stroke. Stroke 27, 1553–1557.PubMedCrossRefGoogle Scholar
  10. 10.
    Mogi, M., Harada, M., Kondo, T., Narabayashi, H., Riederer, P., and Nagatsu, T. (1995) Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease. Neurosci Lett 193, 129–132.PubMedCrossRefGoogle Scholar
  11. 11.
    van der Wal, E. A., Gomez-Pinilla, F., and Cotman, C. W. (1993) Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies. Neuroreport 4, 69–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Platten, M., Wick, W., and Weller, M. (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52, 401–410.PubMedCrossRefGoogle Scholar
  13. 13.
    Lin, A. H., Luo, J., Mondshein, L. H., ten Dijke, P., Vivien, D., Contag, C. H., and Wyss-Coray, T. (2005) Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J Immunol 175, 547–554.PubMedGoogle Scholar
  14. 14.
    Luo, J., Lin, A. H., Masliah, E., and Wyss-Coray, T. (2006) Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration. Proc Natl Acad Sci USA 103, 18326–18331.PubMedCrossRefGoogle Scholar
  15. 15.
    Luo, J., Ho, P. P., Buckwalter, M. S., Hsu, T., Lee, L. Y., Zhang, H., Kim, D. K., Kim, S. J., Gambhir, S. S., Steinman, L., and Wyss-Coray, T. (2007) Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J Clin Invest 117, 3306–3315.PubMedCrossRefGoogle Scholar
  16. 16.
    Ray, P., De, A., Min, J. J., Tsien, R. Y., and Gambhir, S. S. (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64, 1323–1330.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Luo
    • 1
  • Tony Wyss-Coray
    • 2
    • 3
  1. 1.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  2. 2.Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordUSA
  3. 3.GRECC, VA Palo Alto Health Care SystemPalo AltoUSA

Personalised recommendations